Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addscom Structured version   Visualization version   GIF version

Theorem addscom 34056
Description: Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addscom ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))

Proof of Theorem addscom
Dummy variables 𝑥 𝑦 𝑟 𝑙 𝑤 𝑥O 𝑦O 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . 3 (𝑥 = 𝑥O → (𝑥 +s 𝑦) = (𝑥O +s 𝑦))
2 oveq2 7263 . . 3 (𝑥 = 𝑥O → (𝑦 +s 𝑥) = (𝑦 +s 𝑥O))
31, 2eqeq12d 2754 . 2 (𝑥 = 𝑥O → ((𝑥 +s 𝑦) = (𝑦 +s 𝑥) ↔ (𝑥O +s 𝑦) = (𝑦 +s 𝑥O)))
4 oveq2 7263 . . 3 (𝑦 = 𝑦O → (𝑥O +s 𝑦) = (𝑥O +s 𝑦O))
5 oveq1 7262 . . 3 (𝑦 = 𝑦O → (𝑦 +s 𝑥O) = (𝑦O +s 𝑥O))
64, 5eqeq12d 2754 . 2 (𝑦 = 𝑦O → ((𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ↔ (𝑥O +s 𝑦O) = (𝑦O +s 𝑥O)))
7 oveq1 7262 . . 3 (𝑥 = 𝑥O → (𝑥 +s 𝑦O) = (𝑥O +s 𝑦O))
8 oveq2 7263 . . 3 (𝑥 = 𝑥O → (𝑦O +s 𝑥) = (𝑦O +s 𝑥O))
97, 8eqeq12d 2754 . 2 (𝑥 = 𝑥O → ((𝑥 +s 𝑦O) = (𝑦O +s 𝑥) ↔ (𝑥O +s 𝑦O) = (𝑦O +s 𝑥O)))
10 oveq1 7262 . . 3 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
11 oveq2 7263 . . 3 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
1210, 11eqeq12d 2754 . 2 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) = (𝑦 +s 𝑥) ↔ (𝐴 +s 𝑦) = (𝑦 +s 𝐴)))
13 oveq2 7263 . . 3 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
14 oveq1 7262 . . 3 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
1513, 14eqeq12d 2754 . 2 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) = (𝑦 +s 𝐴) ↔ (𝐴 +s 𝐵) = (𝐵 +s 𝐴)))
16 simpr2 1193 . . . . . . . . . . 11 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O))
17 elun1 4106 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑥) → 𝑙 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
18 oveq1 7262 . . . . . . . . . . . . 13 (𝑥O = 𝑙 → (𝑥O +s 𝑦) = (𝑙 +s 𝑦))
19 oveq2 7263 . . . . . . . . . . . . 13 (𝑥O = 𝑙 → (𝑦 +s 𝑥O) = (𝑦 +s 𝑙))
2018, 19eqeq12d 2754 . . . . . . . . . . . 12 (𝑥O = 𝑙 → ((𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ↔ (𝑙 +s 𝑦) = (𝑦 +s 𝑙)))
2120rspccva 3551 . . . . . . . . . . 11 ((∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ 𝑙 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑙 +s 𝑦) = (𝑦 +s 𝑙))
2216, 17, 21syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑥)) → (𝑙 +s 𝑦) = (𝑦 +s 𝑙))
2322eqeq2d 2749 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑥)) → (𝑤 = (𝑙 +s 𝑦) ↔ 𝑤 = (𝑦 +s 𝑙)))
2423rexbidva 3224 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦) ↔ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)))
2524abbidv 2808 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} = {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)})
26 simpr3 1194 . . . . . . . . . . 11 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))
27 elun1 4106 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑦) → 𝑙 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
28 oveq2 7263 . . . . . . . . . . . . 13 (𝑦O = 𝑙 → (𝑥 +s 𝑦O) = (𝑥 +s 𝑙))
29 oveq1 7262 . . . . . . . . . . . . 13 (𝑦O = 𝑙 → (𝑦O +s 𝑥) = (𝑙 +s 𝑥))
3028, 29eqeq12d 2754 . . . . . . . . . . . 12 (𝑦O = 𝑙 → ((𝑥 +s 𝑦O) = (𝑦O +s 𝑥) ↔ (𝑥 +s 𝑙) = (𝑙 +s 𝑥)))
3130rspccva 3551 . . . . . . . . . . 11 ((∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥) ∧ 𝑙 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑥 +s 𝑙) = (𝑙 +s 𝑥))
3226, 27, 31syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑦)) → (𝑥 +s 𝑙) = (𝑙 +s 𝑥))
3332eqeq2d 2749 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑦)) → (𝑧 = (𝑥 +s 𝑙) ↔ 𝑧 = (𝑙 +s 𝑥)))
3433rexbidva 3224 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)))
3534abbidv 2808 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)})
3625, 35uneq12d 4094 . . . . . 6 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) = ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)}))
37 uncom 4083 . . . . . 6 ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)}) = ({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)})
3836, 37eqtrdi 2795 . . . . 5 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) = ({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}))
39 elun2 4107 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑥) → 𝑟 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
40 oveq1 7262 . . . . . . . . . . . . 13 (𝑥O = 𝑟 → (𝑥O +s 𝑦) = (𝑟 +s 𝑦))
41 oveq2 7263 . . . . . . . . . . . . 13 (𝑥O = 𝑟 → (𝑦 +s 𝑥O) = (𝑦 +s 𝑟))
4240, 41eqeq12d 2754 . . . . . . . . . . . 12 (𝑥O = 𝑟 → ((𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ↔ (𝑟 +s 𝑦) = (𝑦 +s 𝑟)))
4342rspccva 3551 . . . . . . . . . . 11 ((∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ 𝑟 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑟 +s 𝑦) = (𝑦 +s 𝑟))
4416, 39, 43syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑥)) → (𝑟 +s 𝑦) = (𝑦 +s 𝑟))
4544eqeq2d 2749 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑥)) → (𝑤 = (𝑟 +s 𝑦) ↔ 𝑤 = (𝑦 +s 𝑟)))
4645rexbidva 3224 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦) ↔ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)))
4746abbidv 2808 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} = {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})
48 elun2 4107 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑦) → 𝑟 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
49 oveq2 7263 . . . . . . . . . . . . 13 (𝑦O = 𝑟 → (𝑥 +s 𝑦O) = (𝑥 +s 𝑟))
50 oveq1 7262 . . . . . . . . . . . . 13 (𝑦O = 𝑟 → (𝑦O +s 𝑥) = (𝑟 +s 𝑥))
5149, 50eqeq12d 2754 . . . . . . . . . . . 12 (𝑦O = 𝑟 → ((𝑥 +s 𝑦O) = (𝑦O +s 𝑥) ↔ (𝑥 +s 𝑟) = (𝑟 +s 𝑥)))
5251rspccva 3551 . . . . . . . . . . 11 ((∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥) ∧ 𝑟 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑥 +s 𝑟) = (𝑟 +s 𝑥))
5326, 48, 52syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑦)) → (𝑥 +s 𝑟) = (𝑟 +s 𝑥))
5453eqeq2d 2749 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑦)) → (𝑧 = (𝑥 +s 𝑟) ↔ 𝑧 = (𝑟 +s 𝑥)))
5554rexbidva 3224 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)))
5655abbidv 2808 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)})
5747, 56uneq12d 4094 . . . . . 6 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)}) = ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)}))
58 uncom 4083 . . . . . 6 ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)}) = ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})
5957, 58eqtrdi 2795 . . . . 5 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)}) = ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)}))
6038, 59oveq12d 7273 . . . 4 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)})) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
61 addsval 34053 . . . . 5 ((𝑥 No 𝑦 No ) → (𝑥 +s 𝑦) = (({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)})))
6261adantr 480 . . . 4 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (𝑥 +s 𝑦) = (({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)})))
63 addsval 34053 . . . . . 6 ((𝑦 No 𝑥 No ) → (𝑦 +s 𝑥) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
6463ancoms 458 . . . . 5 ((𝑥 No 𝑦 No ) → (𝑦 +s 𝑥) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
6564adantr 480 . . . 4 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (𝑦 +s 𝑥) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
6660, 62, 653eqtr4d 2788 . . 3 (((𝑥 No 𝑦 No ) ∧ (∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥))) → (𝑥 +s 𝑦) = (𝑦 +s 𝑥))
6766ex 412 . 2 ((𝑥 No 𝑦 No ) → ((∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥O +s 𝑦O) = (𝑦O +s 𝑥O) ∧ ∀𝑥O ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥O +s 𝑦) = (𝑦 +s 𝑥O) ∧ ∀𝑦O ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦O) = (𝑦O +s 𝑥)) → (𝑥 +s 𝑦) = (𝑦 +s 𝑥)))
683, 6, 9, 12, 15, 67no2inds 34039 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cun 3881  cfv 6418  (class class class)co 7255   No csur 33770   |s cscut 33904   L cleft 33956   R cright 33957   +s cadds 34043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-left 33961  df-right 33962  df-norec2 34033  df-adds 34046
This theorem is referenced by:  addscomd  34057
  Copyright terms: Public domain W3C validator