MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscom Structured version   Visualization version   GIF version

Theorem addscom 28017
Description: Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addscom ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))

Proof of Theorem addscom
Dummy variables 𝑤 𝑥 𝑦 𝑙 𝑟 𝑥𝑂 𝑦𝑂 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 +s 𝑦) = (𝑥𝑂 +s 𝑦))
2 oveq2 7456 . . 3 (𝑥 = 𝑥𝑂 → (𝑦 +s 𝑥) = (𝑦 +s 𝑥𝑂))
31, 2eqeq12d 2756 . 2 (𝑥 = 𝑥𝑂 → ((𝑥 +s 𝑦) = (𝑦 +s 𝑥) ↔ (𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂)))
4 oveq2 7456 . . 3 (𝑦 = 𝑦𝑂 → (𝑥𝑂 +s 𝑦) = (𝑥𝑂 +s 𝑦𝑂))
5 oveq1 7455 . . 3 (𝑦 = 𝑦𝑂 → (𝑦 +s 𝑥𝑂) = (𝑦𝑂 +s 𝑥𝑂))
64, 5eqeq12d 2756 . 2 (𝑦 = 𝑦𝑂 → ((𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ↔ (𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂)))
7 oveq1 7455 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 +s 𝑦𝑂) = (𝑥𝑂 +s 𝑦𝑂))
8 oveq2 7456 . . 3 (𝑥 = 𝑥𝑂 → (𝑦𝑂 +s 𝑥) = (𝑦𝑂 +s 𝑥𝑂))
97, 8eqeq12d 2756 . 2 (𝑥 = 𝑥𝑂 → ((𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥) ↔ (𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂)))
10 oveq1 7455 . . 3 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
11 oveq2 7456 . . 3 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
1210, 11eqeq12d 2756 . 2 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) = (𝑦 +s 𝑥) ↔ (𝐴 +s 𝑦) = (𝑦 +s 𝐴)))
13 oveq2 7456 . . 3 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
14 oveq1 7455 . . 3 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
1513, 14eqeq12d 2756 . 2 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) = (𝑦 +s 𝐴) ↔ (𝐴 +s 𝐵) = (𝐵 +s 𝐴)))
16 simpr2 1195 . . . . . . . . . . 11 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂))
17 elun1 4205 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑥) → 𝑙 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
18 oveq1 7455 . . . . . . . . . . . . 13 (𝑥𝑂 = 𝑙 → (𝑥𝑂 +s 𝑦) = (𝑙 +s 𝑦))
19 oveq2 7456 . . . . . . . . . . . . 13 (𝑥𝑂 = 𝑙 → (𝑦 +s 𝑥𝑂) = (𝑦 +s 𝑙))
2018, 19eqeq12d 2756 . . . . . . . . . . . 12 (𝑥𝑂 = 𝑙 → ((𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ↔ (𝑙 +s 𝑦) = (𝑦 +s 𝑙)))
2120rspccva 3634 . . . . . . . . . . 11 ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ 𝑙 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑙 +s 𝑦) = (𝑦 +s 𝑙))
2216, 17, 21syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑥)) → (𝑙 +s 𝑦) = (𝑦 +s 𝑙))
2322eqeq2d 2751 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑥)) → (𝑤 = (𝑙 +s 𝑦) ↔ 𝑤 = (𝑦 +s 𝑙)))
2423rexbidva 3183 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦) ↔ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)))
2524abbidv 2811 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} = {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)})
26 simpr3 1196 . . . . . . . . . . 11 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))
27 elun1 4205 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑦) → 𝑙 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
28 oveq2 7456 . . . . . . . . . . . . 13 (𝑦𝑂 = 𝑙 → (𝑥 +s 𝑦𝑂) = (𝑥 +s 𝑙))
29 oveq1 7455 . . . . . . . . . . . . 13 (𝑦𝑂 = 𝑙 → (𝑦𝑂 +s 𝑥) = (𝑙 +s 𝑥))
3028, 29eqeq12d 2756 . . . . . . . . . . . 12 (𝑦𝑂 = 𝑙 → ((𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥) ↔ (𝑥 +s 𝑙) = (𝑙 +s 𝑥)))
3130rspccva 3634 . . . . . . . . . . 11 ((∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥) ∧ 𝑙 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑥 +s 𝑙) = (𝑙 +s 𝑥))
3226, 27, 31syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑦)) → (𝑥 +s 𝑙) = (𝑙 +s 𝑥))
3332eqeq2d 2751 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑙 ∈ ( L ‘𝑦)) → (𝑧 = (𝑥 +s 𝑙) ↔ 𝑧 = (𝑙 +s 𝑥)))
3433rexbidva 3183 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)))
3534abbidv 2811 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)})
3625, 35uneq12d 4192 . . . . . 6 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) = ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)}))
37 uncom 4181 . . . . . 6 ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)}) = ({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)})
3836, 37eqtrdi 2796 . . . . 5 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → ({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) = ({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}))
39 elun2 4206 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑥) → 𝑟 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
40 oveq1 7455 . . . . . . . . . . . . 13 (𝑥𝑂 = 𝑟 → (𝑥𝑂 +s 𝑦) = (𝑟 +s 𝑦))
41 oveq2 7456 . . . . . . . . . . . . 13 (𝑥𝑂 = 𝑟 → (𝑦 +s 𝑥𝑂) = (𝑦 +s 𝑟))
4240, 41eqeq12d 2756 . . . . . . . . . . . 12 (𝑥𝑂 = 𝑟 → ((𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ↔ (𝑟 +s 𝑦) = (𝑦 +s 𝑟)))
4342rspccva 3634 . . . . . . . . . . 11 ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ 𝑟 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑟 +s 𝑦) = (𝑦 +s 𝑟))
4416, 39, 43syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑥)) → (𝑟 +s 𝑦) = (𝑦 +s 𝑟))
4544eqeq2d 2751 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑥)) → (𝑤 = (𝑟 +s 𝑦) ↔ 𝑤 = (𝑦 +s 𝑟)))
4645rexbidva 3183 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦) ↔ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)))
4746abbidv 2811 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} = {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})
48 elun2 4206 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑦) → 𝑟 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
49 oveq2 7456 . . . . . . . . . . . . 13 (𝑦𝑂 = 𝑟 → (𝑥 +s 𝑦𝑂) = (𝑥 +s 𝑟))
50 oveq1 7455 . . . . . . . . . . . . 13 (𝑦𝑂 = 𝑟 → (𝑦𝑂 +s 𝑥) = (𝑟 +s 𝑥))
5149, 50eqeq12d 2756 . . . . . . . . . . . 12 (𝑦𝑂 = 𝑟 → ((𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥) ↔ (𝑥 +s 𝑟) = (𝑟 +s 𝑥)))
5251rspccva 3634 . . . . . . . . . . 11 ((∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥) ∧ 𝑟 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑥 +s 𝑟) = (𝑟 +s 𝑥))
5326, 48, 52syl2an 595 . . . . . . . . . 10 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑦)) → (𝑥 +s 𝑟) = (𝑟 +s 𝑥))
5453eqeq2d 2751 . . . . . . . . 9 ((((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) ∧ 𝑟 ∈ ( R ‘𝑦)) → (𝑧 = (𝑥 +s 𝑟) ↔ 𝑧 = (𝑟 +s 𝑥)))
5554rexbidva 3183 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)))
5655abbidv 2811 . . . . . . 7 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)})
5747, 56uneq12d 4192 . . . . . 6 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)}) = ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)}))
58 uncom 4181 . . . . . 6 ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)}) = ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})
5957, 58eqtrdi 2796 . . . . 5 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)}) = ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)}))
6038, 59oveq12d 7466 . . . 4 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)})) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
61 addsval 28013 . . . . 5 ((𝑥 No 𝑦 No ) → (𝑥 +s 𝑦) = (({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)})))
6261adantr 480 . . . 4 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (𝑥 +s 𝑦) = (({𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑙 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑥 +s 𝑙)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑟 +s 𝑦)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑥 +s 𝑟)})))
63 addsval 28013 . . . . . 6 ((𝑦 No 𝑥 No ) → (𝑦 +s 𝑥) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
6463ancoms 458 . . . . 5 ((𝑥 No 𝑦 No ) → (𝑦 +s 𝑥) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
6564adantr 480 . . . 4 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (𝑦 +s 𝑥) = (({𝑧 ∣ ∃𝑙 ∈ ( L ‘𝑦)𝑧 = (𝑙 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑙 ∈ ( L ‘𝑥)𝑤 = (𝑦 +s 𝑙)}) |s ({𝑧 ∣ ∃𝑟 ∈ ( R ‘𝑦)𝑧 = (𝑟 +s 𝑥)} ∪ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑥)𝑤 = (𝑦 +s 𝑟)})))
6660, 62, 653eqtr4d 2790 . . 3 (((𝑥 No 𝑦 No ) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥))) → (𝑥 +s 𝑦) = (𝑦 +s 𝑥))
6766ex 412 . 2 ((𝑥 No 𝑦 No ) → ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥𝑂 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥𝑂) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s 𝑦) = (𝑦 +s 𝑥𝑂) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))(𝑥 +s 𝑦𝑂) = (𝑦𝑂 +s 𝑥)) → (𝑥 +s 𝑦) = (𝑦 +s 𝑥)))
683, 6, 9, 12, 15, 67no2inds 28006 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cun 3974  cfv 6573  (class class class)co 7448   No csur 27702   |s cscut 27845   L cleft 27902   R cright 27903   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addscomd  28018  sltadd2im  28037  sleadd2im  28039  sleadd2  28041  sltadd1  28043  addscan1  28045  pncans  28120  nohalf  28425
  Copyright terms: Public domain W3C validator