![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdsssubm | Structured version Visualization version GIF version |
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmdsssubm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sswrd 14557 | . . . 4 ⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ Word 𝐼) |
3 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
4 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | 3, 4 | frmdbas 18878 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Base‘𝑀) = Word 𝐼) |
7 | 2, 6 | sseqtrrd 4037 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ (Base‘𝑀)) |
8 | wrd0 14574 | . . 3 ⊢ ∅ ∈ Word 𝐽 | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∅ ∈ Word 𝐽) |
10 | 7 | sselda 3995 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀)) |
11 | 7 | sselda 3995 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀)) |
12 | 10, 11 | anim12dan 619 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
13 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
14 | 3, 4, 13 | frmdadd 18881 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
16 | ccatcl 14609 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽) | |
17 | 16 | adantl 481 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽) |
18 | 15, 17 | eqeltrd 2839 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
19 | 18 | ralrimivva 3200 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
20 | 3 | frmdmnd 18885 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑀 ∈ Mnd) |
22 | 3 | frmd0 18886 | . . . 4 ⊢ ∅ = (0g‘𝑀) |
23 | 4, 22, 13 | issubm 18829 | . . 3 ⊢ (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
25 | 7, 9, 19, 24 | mpbir3and 1341 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Word cword 14549 ++ cconcat 14605 Basecbs 17245 +gcplusg 17298 Mndcmnd 18760 SubMndcsubmnd 18808 freeMndcfrmd 18873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-frmd 18875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |