MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdsssubm Structured version   Visualization version   GIF version

Theorem frmdsssubm 17837
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdsssubm ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))

Proof of Theorem frmdsssubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sswrd 13715 . . . 4 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
21adantl 482 . . 3 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ⊆ Word 𝐼)
3 frmdmnd.m . . . . 5 𝑀 = (freeMnd‘𝐼)
4 eqid 2795 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
53, 4frmdbas 17828 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
65adantr 481 . . 3 ((𝐼𝑉𝐽𝐼) → (Base‘𝑀) = Word 𝐼)
72, 6sseqtr4d 3929 . 2 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ⊆ (Base‘𝑀))
8 wrd0 13735 . . 3 ∅ ∈ Word 𝐽
98a1i 11 . 2 ((𝐼𝑉𝐽𝐼) → ∅ ∈ Word 𝐽)
107sselda 3889 . . . . . 6 (((𝐼𝑉𝐽𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀))
117sselda 3889 . . . . . 6 (((𝐼𝑉𝐽𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀))
1210, 11anim12dan 618 . . . . 5 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
13 eqid 2795 . . . . . 6 (+g𝑀) = (+g𝑀)
143, 4, 13frmdadd 17831 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
1512, 14syl 17 . . . 4 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
16 ccatcl 13772 . . . . 5 ((𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽)
1716adantl 482 . . . 4 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽)
1815, 17eqeltrd 2883 . . 3 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐽)
1918ralrimivva 3158 . 2 ((𝐼𝑉𝐽𝐼) → ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)
203frmdmnd 17835 . . . 4 (𝐼𝑉𝑀 ∈ Mnd)
2120adantr 481 . . 3 ((𝐼𝑉𝐽𝐼) → 𝑀 ∈ Mnd)
223frmd0 17836 . . . 4 ∅ = (0g𝑀)
234, 22, 13issubm 17786 . . 3 (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)))
2421, 23syl 17 . 2 ((𝐼𝑉𝐽𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)))
257, 9, 19, 24mpbir3and 1335 1 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wss 3859  c0 4211  cfv 6225  (class class class)co 7016  Word cword 13707   ++ cconcat 13768  Basecbs 16312  +gcplusg 16394  Mndcmnd 17733  SubMndcsubmnd 17773  freeMndcfrmd 17823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-concat 13769  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-frmd 17825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator