MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdsssubm Structured version   Visualization version   GIF version

Theorem frmdsssubm 18795
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdsssubm ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))

Proof of Theorem frmdsssubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sswrd 14494 . . . 4 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
21adantl 481 . . 3 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ⊆ Word 𝐼)
3 frmdmnd.m . . . . 5 𝑀 = (freeMnd‘𝐼)
4 eqid 2730 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
53, 4frmdbas 18786 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
65adantr 480 . . 3 ((𝐼𝑉𝐽𝐼) → (Base‘𝑀) = Word 𝐼)
72, 6sseqtrrd 3987 . 2 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ⊆ (Base‘𝑀))
8 wrd0 14511 . . 3 ∅ ∈ Word 𝐽
98a1i 11 . 2 ((𝐼𝑉𝐽𝐼) → ∅ ∈ Word 𝐽)
107sselda 3949 . . . . . 6 (((𝐼𝑉𝐽𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀))
117sselda 3949 . . . . . 6 (((𝐼𝑉𝐽𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀))
1210, 11anim12dan 619 . . . . 5 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
13 eqid 2730 . . . . . 6 (+g𝑀) = (+g𝑀)
143, 4, 13frmdadd 18789 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
1512, 14syl 17 . . . 4 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
16 ccatcl 14546 . . . . 5 ((𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽)
1716adantl 481 . . . 4 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽)
1815, 17eqeltrd 2829 . . 3 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐽)
1918ralrimivva 3181 . 2 ((𝐼𝑉𝐽𝐼) → ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)
203frmdmnd 18793 . . . 4 (𝐼𝑉𝑀 ∈ Mnd)
2120adantr 480 . . 3 ((𝐼𝑉𝐽𝐼) → 𝑀 ∈ Mnd)
223frmd0 18794 . . . 4 ∅ = (0g𝑀)
234, 22, 13issubm 18737 . . 3 (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)))
2421, 23syl 17 . 2 ((𝐼𝑉𝐽𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)))
257, 9, 19, 24mpbir3and 1343 1 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  c0 4299  cfv 6514  (class class class)co 7390  Word cword 14485   ++ cconcat 14542  Basecbs 17186  +gcplusg 17227  Mndcmnd 18668  SubMndcsubmnd 18716  freeMndcfrmd 18781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-frmd 18783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator