![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdsssubm | Structured version Visualization version GIF version |
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmdsssubm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sswrd 13542 | . . . 4 ⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) | |
2 | 1 | adantl 474 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ Word 𝐼) |
3 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
4 | eqid 2799 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | 3, 4 | frmdbas 17705 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
6 | 5 | adantr 473 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Base‘𝑀) = Word 𝐼) |
7 | 2, 6 | sseqtr4d 3838 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ (Base‘𝑀)) |
8 | wrd0 13559 | . . 3 ⊢ ∅ ∈ Word 𝐽 | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∅ ∈ Word 𝐽) |
10 | 7 | sselda 3798 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀)) |
11 | 7 | sselda 3798 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀)) |
12 | 10, 11 | anim12dan 613 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
13 | eqid 2799 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
14 | 3, 4, 13 | frmdadd 17708 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
16 | ccatcl 13594 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽) | |
17 | 16 | adantl 474 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽) |
18 | 15, 17 | eqeltrd 2878 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
19 | 18 | ralrimivva 3152 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
20 | 3 | frmdmnd 17712 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
21 | 20 | adantr 473 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑀 ∈ Mnd) |
22 | 3 | frmd0 17713 | . . . 4 ⊢ ∅ = (0g‘𝑀) |
23 | 4, 22, 13 | issubm 17662 | . . 3 ⊢ (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
25 | 7, 9, 19, 24 | mpbir3and 1443 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ⊆ wss 3769 ∅c0 4115 ‘cfv 6101 (class class class)co 6878 Word cword 13534 ++ cconcat 13590 Basecbs 16184 +gcplusg 16267 Mndcmnd 17609 SubMndcsubmnd 17649 freeMndcfrmd 17700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-hash 13371 df-word 13535 df-concat 13591 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-plusg 16280 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-frmd 17702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |