Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmdsssubm | Structured version Visualization version GIF version |
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmdsssubm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sswrd 14153 | . . . 4 ⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ Word 𝐼) |
3 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
4 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | 3, 4 | frmdbas 18406 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Base‘𝑀) = Word 𝐼) |
7 | 2, 6 | sseqtrrd 3958 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ (Base‘𝑀)) |
8 | wrd0 14170 | . . 3 ⊢ ∅ ∈ Word 𝐽 | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∅ ∈ Word 𝐽) |
10 | 7 | sselda 3917 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀)) |
11 | 7 | sselda 3917 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀)) |
12 | 10, 11 | anim12dan 618 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
13 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
14 | 3, 4, 13 | frmdadd 18409 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
16 | ccatcl 14205 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽) | |
17 | 16 | adantl 481 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽) |
18 | 15, 17 | eqeltrd 2839 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
19 | 18 | ralrimivva 3114 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
20 | 3 | frmdmnd 18413 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑀 ∈ Mnd) |
22 | 3 | frmd0 18414 | . . . 4 ⊢ ∅ = (0g‘𝑀) |
23 | 4, 22, 13 | issubm 18357 | . . 3 ⊢ (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
25 | 7, 9, 19, 24 | mpbir3and 1340 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Word cword 14145 ++ cconcat 14201 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 SubMndcsubmnd 18344 freeMndcfrmd 18401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-frmd 18403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |