![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdsssubm | Structured version Visualization version GIF version |
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmdsssubm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sswrd 13715 | . . . 4 ⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ Word 𝐼) |
3 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
4 | eqid 2795 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | 3, 4 | frmdbas 17828 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Base‘𝑀) = Word 𝐼) |
7 | 2, 6 | sseqtr4d 3929 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ (Base‘𝑀)) |
8 | wrd0 13735 | . . 3 ⊢ ∅ ∈ Word 𝐽 | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∅ ∈ Word 𝐽) |
10 | 7 | sselda 3889 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀)) |
11 | 7 | sselda 3889 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀)) |
12 | 10, 11 | anim12dan 618 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
13 | eqid 2795 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
14 | 3, 4, 13 | frmdadd 17831 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
16 | ccatcl 13772 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽) | |
17 | 16 | adantl 482 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽) |
18 | 15, 17 | eqeltrd 2883 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
19 | 18 | ralrimivva 3158 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
20 | 3 | frmdmnd 17835 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑀 ∈ Mnd) |
22 | 3 | frmd0 17836 | . . . 4 ⊢ ∅ = (0g‘𝑀) |
23 | 4, 22, 13 | issubm 17786 | . . 3 ⊢ (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
25 | 7, 9, 19, 24 | mpbir3and 1335 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ⊆ wss 3859 ∅c0 4211 ‘cfv 6225 (class class class)co 7016 Word cword 13707 ++ cconcat 13768 Basecbs 16312 +gcplusg 16394 Mndcmnd 17733 SubMndcsubmnd 17773 freeMndcfrmd 17823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-hash 13541 df-word 13708 df-concat 13769 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-plusg 16407 df-0g 16544 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-frmd 17825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |