Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccbnd Structured version   Visualization version   GIF version

Theorem iccbnd 36299
Description: A closed interval in is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
iccbnd.1 𝐽 = (𝐴[,]𝐵)
iccbnd.2 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
Assertion
Ref Expression
iccbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))

Proof of Theorem iccbnd
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccbnd.2 . . 3 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
2 cnmet 24135 . . . 4 (abs ∘ − ) ∈ (Met‘ℂ)
3 iccbnd.1 . . . . . 6 𝐽 = (𝐴[,]𝐵)
4 iccssre 13346 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
53, 4eqsstrid 3992 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ)
6 ax-resscn 11108 . . . . 5 ℝ ⊆ ℂ
75, 6sstrdi 3956 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℂ)
8 metres2 23716 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐽 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
92, 7, 8sylancr 587 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
101, 9eqeltrid 2842 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Met‘𝐽))
11 resubcl 11465 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
1211ancoms 459 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
131oveqi 7370 . . . . . . 7 (𝑥𝑀𝑦) = (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦)
14 ovres 7520 . . . . . . . 8 ((𝑥𝐽𝑦𝐽) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1514adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1613, 15eqtrid 2788 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (𝑥(abs ∘ − )𝑦))
177sselda 3944 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥𝐽) → 𝑥 ∈ ℂ)
187sselda 3944 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦𝐽) → 𝑦 ∈ ℂ)
1917, 18anim12dan 619 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
20 eqid 2736 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 24134 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2219, 21syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2316, 22eqtrd 2776 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (abs‘(𝑥𝑦)))
24 simprr 771 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐽)
2524, 3eleqtrdi 2848 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ (𝐴[,]𝐵))
26 elicc2 13329 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2726adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2825, 27mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2928simp1d 1142 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ ℝ)
3012adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝐴) ∈ ℝ)
31 resubcl 11465 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
3229, 30, 31syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
33 simpll 765 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴 ∈ ℝ)
34 simprl 769 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐽)
3534, 3eleqtrdi 2848 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ (𝐴[,]𝐵))
36 elicc2 13329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3736adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3835, 37mpbid 231 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938simp1d 1142 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ ℝ)
40 simplr 767 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ∈ ℝ)
4128simp3d 1144 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐵)
4229, 40, 33, 41lesub1dd 11771 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦𝐴) ≤ (𝐵𝐴))
4329, 33, 30, 42subled 11758 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝐴)
4438simp2d 1143 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑥)
4532, 33, 39, 43, 44letrd 11312 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝑥)
4629, 30readdcld 11184 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 + (𝐵𝐴)) ∈ ℝ)
4738simp3d 1144 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐵)
4828simp2d 1143 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑦)
4933, 29, 40, 48lesub2dd 11772 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝑦) ≤ (𝐵𝐴))
5040, 29, 30lesubadd2d 11754 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((𝐵𝑦) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝑦 + (𝐵𝐴))))
5149, 50mpbid 231 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ≤ (𝑦 + (𝐵𝐴)))
5239, 40, 46, 47, 51letrd 11312 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ≤ (𝑦 + (𝐵𝐴)))
5339, 29, 30absdifled 15319 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((abs‘(𝑥𝑦)) ≤ (𝐵𝐴) ↔ ((𝑦 − (𝐵𝐴)) ≤ 𝑥𝑥 ≤ (𝑦 + (𝐵𝐴)))))
5445, 52, 53mpbir2and 711 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (abs‘(𝑥𝑦)) ≤ (𝐵𝐴))
5523, 54eqbrtrd 5127 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) ≤ (𝐵𝐴))
5655ralrimivva 3197 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴))
57 breq2 5109 . . . . 5 (𝑟 = (𝐵𝐴) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
58572ralbidv 3212 . . . 4 (𝑟 = (𝐵𝐴) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
5958rspcev 3581 . . 3 (((𝐵𝐴) ∈ ℝ ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
6012, 56, 59syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
61 isbnd3b 36244 . 2 (𝑀 ∈ (Bnd‘𝐽) ↔ (𝑀 ∈ (Met‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟))
6210, 60, 61sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910   class class class wbr 5105   × cxp 5631  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   + caddc 11054  cle 11190  cmin 11385  [,]cicc 13267  abscabs 15119  Metcmet 20782  Bndcbnd 36226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-ec 8650  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-bnd 36238
This theorem is referenced by:  icccmpALT  36300
  Copyright terms: Public domain W3C validator