Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccbnd Structured version   Visualization version   GIF version

Theorem iccbnd 37847
Description: A closed interval in is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
iccbnd.1 𝐽 = (𝐴[,]𝐵)
iccbnd.2 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
Assertion
Ref Expression
iccbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))

Proof of Theorem iccbnd
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccbnd.2 . . 3 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
2 cnmet 24792 . . . 4 (abs ∘ − ) ∈ (Met‘ℂ)
3 iccbnd.1 . . . . . 6 𝐽 = (𝐴[,]𝐵)
4 iccssre 13469 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
53, 4eqsstrid 4022 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ)
6 ax-resscn 11212 . . . . 5 ℝ ⊆ ℂ
75, 6sstrdi 3996 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℂ)
8 metres2 24373 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐽 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
92, 7, 8sylancr 587 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
101, 9eqeltrid 2845 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Met‘𝐽))
11 resubcl 11573 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
1211ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
131oveqi 7444 . . . . . . 7 (𝑥𝑀𝑦) = (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦)
14 ovres 7599 . . . . . . . 8 ((𝑥𝐽𝑦𝐽) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1514adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1613, 15eqtrid 2789 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (𝑥(abs ∘ − )𝑦))
177sselda 3983 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥𝐽) → 𝑥 ∈ ℂ)
187sselda 3983 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦𝐽) → 𝑦 ∈ ℂ)
1917, 18anim12dan 619 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
20 eqid 2737 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 24791 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2219, 21syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2316, 22eqtrd 2777 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (abs‘(𝑥𝑦)))
24 simprr 773 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐽)
2524, 3eleqtrdi 2851 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ (𝐴[,]𝐵))
26 elicc2 13452 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2726adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2825, 27mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2928simp1d 1143 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ ℝ)
3012adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝐴) ∈ ℝ)
31 resubcl 11573 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
3229, 30, 31syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
33 simpll 767 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴 ∈ ℝ)
34 simprl 771 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐽)
3534, 3eleqtrdi 2851 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ (𝐴[,]𝐵))
36 elicc2 13452 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3736adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3835, 37mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938simp1d 1143 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ ℝ)
40 simplr 769 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ∈ ℝ)
4128simp3d 1145 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐵)
4229, 40, 33, 41lesub1dd 11879 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦𝐴) ≤ (𝐵𝐴))
4329, 33, 30, 42subled 11866 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝐴)
4438simp2d 1144 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑥)
4532, 33, 39, 43, 44letrd 11418 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝑥)
4629, 30readdcld 11290 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 + (𝐵𝐴)) ∈ ℝ)
4738simp3d 1145 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐵)
4828simp2d 1144 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑦)
4933, 29, 40, 48lesub2dd 11880 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝑦) ≤ (𝐵𝐴))
5040, 29, 30lesubadd2d 11862 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((𝐵𝑦) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝑦 + (𝐵𝐴))))
5149, 50mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ≤ (𝑦 + (𝐵𝐴)))
5239, 40, 46, 47, 51letrd 11418 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ≤ (𝑦 + (𝐵𝐴)))
5339, 29, 30absdifled 15473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((abs‘(𝑥𝑦)) ≤ (𝐵𝐴) ↔ ((𝑦 − (𝐵𝐴)) ≤ 𝑥𝑥 ≤ (𝑦 + (𝐵𝐴)))))
5445, 52, 53mpbir2and 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (abs‘(𝑥𝑦)) ≤ (𝐵𝐴))
5523, 54eqbrtrd 5165 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) ≤ (𝐵𝐴))
5655ralrimivva 3202 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴))
57 breq2 5147 . . . . 5 (𝑟 = (𝐵𝐴) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
58572ralbidv 3221 . . . 4 (𝑟 = (𝐵𝐴) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
5958rspcev 3622 . . 3 (((𝐵𝐴) ∈ ℝ ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
6012, 56, 59syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
61 isbnd3b 37792 . 2 (𝑀 ∈ (Bnd‘𝐽) ↔ (𝑀 ∈ (Met‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟))
6210, 60, 61sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143   × cxp 5683  cres 5687  ccom 5689  cfv 6561  (class class class)co 7431  cc 11153  cr 11154   + caddc 11158  cle 11296  cmin 11492  [,]cicc 13390  abscabs 15273  Metcmet 21350  Bndcbnd 37774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-bnd 37786
This theorem is referenced by:  icccmpALT  37848
  Copyright terms: Public domain W3C validator