Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccbnd Structured version   Visualization version   GIF version

Theorem iccbnd 37901
Description: A closed interval in is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
iccbnd.1 𝐽 = (𝐴[,]𝐵)
iccbnd.2 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
Assertion
Ref Expression
iccbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))

Proof of Theorem iccbnd
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccbnd.2 . . 3 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
2 cnmet 24687 . . . 4 (abs ∘ − ) ∈ (Met‘ℂ)
3 iccbnd.1 . . . . . 6 𝐽 = (𝐴[,]𝐵)
4 iccssre 13331 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
53, 4eqsstrid 3969 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ)
6 ax-resscn 11070 . . . . 5 ℝ ⊆ ℂ
75, 6sstrdi 3943 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℂ)
8 metres2 24279 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐽 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
92, 7, 8sylancr 587 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
101, 9eqeltrid 2837 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Met‘𝐽))
11 resubcl 11432 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
1211ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
131oveqi 7365 . . . . . . 7 (𝑥𝑀𝑦) = (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦)
14 ovres 7518 . . . . . . . 8 ((𝑥𝐽𝑦𝐽) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1514adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1613, 15eqtrid 2780 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (𝑥(abs ∘ − )𝑦))
177sselda 3930 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥𝐽) → 𝑥 ∈ ℂ)
187sselda 3930 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦𝐽) → 𝑦 ∈ ℂ)
1917, 18anim12dan 619 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
20 eqid 2733 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 24686 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2219, 21syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2316, 22eqtrd 2768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (abs‘(𝑥𝑦)))
24 simprr 772 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐽)
2524, 3eleqtrdi 2843 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ (𝐴[,]𝐵))
26 elicc2 13313 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2726adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2825, 27mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2928simp1d 1142 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ ℝ)
3012adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝐴) ∈ ℝ)
31 resubcl 11432 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
3229, 30, 31syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
33 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴 ∈ ℝ)
34 simprl 770 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐽)
3534, 3eleqtrdi 2843 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ (𝐴[,]𝐵))
36 elicc2 13313 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3736adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3835, 37mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938simp1d 1142 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ ℝ)
40 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ∈ ℝ)
4128simp3d 1144 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐵)
4229, 40, 33, 41lesub1dd 11740 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦𝐴) ≤ (𝐵𝐴))
4329, 33, 30, 42subled 11727 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝐴)
4438simp2d 1143 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑥)
4532, 33, 39, 43, 44letrd 11277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝑥)
4629, 30readdcld 11148 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 + (𝐵𝐴)) ∈ ℝ)
4738simp3d 1144 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐵)
4828simp2d 1143 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑦)
4933, 29, 40, 48lesub2dd 11741 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝑦) ≤ (𝐵𝐴))
5040, 29, 30lesubadd2d 11723 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((𝐵𝑦) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝑦 + (𝐵𝐴))))
5149, 50mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ≤ (𝑦 + (𝐵𝐴)))
5239, 40, 46, 47, 51letrd 11277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ≤ (𝑦 + (𝐵𝐴)))
5339, 29, 30absdifled 15346 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((abs‘(𝑥𝑦)) ≤ (𝐵𝐴) ↔ ((𝑦 − (𝐵𝐴)) ≤ 𝑥𝑥 ≤ (𝑦 + (𝐵𝐴)))))
5445, 52, 53mpbir2and 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (abs‘(𝑥𝑦)) ≤ (𝐵𝐴))
5523, 54eqbrtrd 5115 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) ≤ (𝐵𝐴))
5655ralrimivva 3176 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴))
57 breq2 5097 . . . . 5 (𝑟 = (𝐵𝐴) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
58572ralbidv 3197 . . . 4 (𝑟 = (𝐵𝐴) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
5958rspcev 3573 . . 3 (((𝐵𝐴) ∈ ℝ ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
6012, 56, 59syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
61 isbnd3b 37846 . 2 (𝑀 ∈ (Bnd‘𝐽) ↔ (𝑀 ∈ (Met‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟))
6210, 60, 61sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5093   × cxp 5617  cres 5621  ccom 5623  cfv 6486  (class class class)co 7352  cc 11011  cr 11012   + caddc 11016  cle 11154  cmin 11351  [,]cicc 13250  abscabs 15143  Metcmet 21279  Bndcbnd 37828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-ec 8630  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-bnd 37840
This theorem is referenced by:  icccmpALT  37902
  Copyright terms: Public domain W3C validator