![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pc11 | Structured version Visualization version GIF version |
Description: The prime count function, viewed as a function from ℕ to (ℕ ↑m ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pc11 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7423 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)) | |
2 | 1 | ralrimivw 3146 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)) |
3 | nn0z 12608 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
4 | nn0z 12608 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
5 | zq 12963 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
6 | pcxcl 16824 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt 𝐴) ∈ ℝ*) | |
7 | 5, 6 | sylan2 592 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑝 pCnt 𝐴) ∈ ℝ*) |
8 | zq 12963 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℚ) | |
9 | pcxcl 16824 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*) | |
10 | 8, 9 | sylan2 592 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt 𝐵) ∈ ℝ*) |
11 | 7, 10 | anim12dan 618 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*)) |
12 | xrletri3 13160 | . . . . . . . . 9 ⊢ (((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
14 | 13 | ancoms 458 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
15 | 14 | ralbidva 3171 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
16 | r19.26 3107 | . . . . . 6 ⊢ (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))) | |
17 | 15, 16 | bitrdi 287 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
18 | pc2dvds 16842 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) | |
19 | pc2dvds 16842 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))) | |
20 | 19 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))) |
21 | 18, 20 | anbi12d 631 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
22 | 17, 21 | bitr4d 282 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴))) |
23 | 3, 4, 22 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴))) |
24 | dvdseq 16285 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴)) → 𝐴 = 𝐵) | |
25 | 24 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) → 𝐴 = 𝐵)) |
26 | 23, 25 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → 𝐴 = 𝐵)) |
27 | 2, 26 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 class class class wbr 5143 (class class class)co 7415 ℝ*cxr 11272 ≤ cle 11274 ℕ0cn0 12497 ℤcz 12583 ℚcq 12957 ∥ cdvds 16225 ℙcprime 16636 pCnt cpc 16799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-q 12958 df-rp 13002 df-fz 13512 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-dvds 16226 df-gcd 16464 df-prm 16637 df-pc 16800 |
This theorem is referenced by: pcprod 16858 prmreclem2 16880 1arith 16890 isppw2 27041 sqf11 27065 bposlem3 27213 aks6d1c2p2 41585 |
Copyright terms: Public domain | W3C validator |