MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc11 Structured version   Visualization version   GIF version

Theorem pc11 16792
Description: The prime count function, viewed as a function from to (ℕ ↑m ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pc11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc11
StepHypRef Expression
1 oveq2 7354 . . 3 (𝐴 = 𝐵 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
21ralrimivw 3128 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3 nn0z 12493 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4 nn0z 12493 . . . 4 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
5 zq 12852 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
6 pcxcl 16773 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt 𝐴) ∈ ℝ*)
75, 6sylan2 593 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑝 pCnt 𝐴) ∈ ℝ*)
8 zq 12852 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
9 pcxcl 16773 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
108, 9sylan2 593 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
117, 10anim12dan 619 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*))
12 xrletri3 13053 . . . . . . . . 9 (((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1311, 12syl 17 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1413ancoms 458 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1514ralbidva 3153 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
16 r19.26 3092 . . . . . 6 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
1715, 16bitrdi 287 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
18 pc2dvds 16791 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
19 pc2dvds 16791 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
2019ancoms 458 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
2118, 20anbi12d 632 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
2217, 21bitr4d 282 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴𝐵𝐵𝐴)))
233, 4, 22syl2an 596 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴𝐵𝐵𝐴)))
24 dvdseq 16225 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 = 𝐵)
2524ex 412 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵))
2623, 25sylbid 240 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → 𝐴 = 𝐵))
272, 26impbid2 226 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  (class class class)co 7346  *cxr 11145  cle 11147  0cn0 12381  cz 12468  cq 12846  cdvds 16163  cprime 16582   pCnt cpc 16748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749
This theorem is referenced by:  pcprod  16807  prmreclem2  16829  1arith  16839  isppw2  27052  sqf11  27076  bposlem3  27224  aks6d1c2p2  42160  aks6d1c7  42225
  Copyright terms: Public domain W3C validator