Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pc11 | Structured version Visualization version GIF version |
Description: The prime count function, viewed as a function from ℕ to (ℕ ↑m ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pc11 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7279 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)) | |
2 | 1 | ralrimivw 3111 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)) |
3 | nn0z 12343 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
4 | nn0z 12343 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
5 | zq 12693 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
6 | pcxcl 16560 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt 𝐴) ∈ ℝ*) | |
7 | 5, 6 | sylan2 593 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑝 pCnt 𝐴) ∈ ℝ*) |
8 | zq 12693 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℚ) | |
9 | pcxcl 16560 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*) | |
10 | 8, 9 | sylan2 593 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt 𝐵) ∈ ℝ*) |
11 | 7, 10 | anim12dan 619 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*)) |
12 | xrletri3 12887 | . . . . . . . . 9 ⊢ (((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
14 | 13 | ancoms 459 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
15 | 14 | ralbidva 3122 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
16 | r19.26 3097 | . . . . . 6 ⊢ (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))) | |
17 | 15, 16 | bitrdi 287 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
18 | pc2dvds 16578 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) | |
19 | pc2dvds 16578 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))) | |
20 | 19 | ancoms 459 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))) |
21 | 18, 20 | anbi12d 631 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))) |
22 | 17, 21 | bitr4d 281 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴))) |
23 | 3, 4, 22 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴))) |
24 | dvdseq 16021 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴)) → 𝐴 = 𝐵) | |
25 | 24 | ex 413 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) → 𝐴 = 𝐵)) |
26 | 23, 25 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → 𝐴 = 𝐵)) |
27 | 2, 26 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 (class class class)co 7271 ℝ*cxr 11009 ≤ cle 11011 ℕ0cn0 12233 ℤcz 12319 ℚcq 12687 ∥ cdvds 15961 ℙcprime 16374 pCnt cpc 16535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-fz 13239 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-dvds 15962 df-gcd 16200 df-prm 16375 df-pc 16536 |
This theorem is referenced by: pcprod 16594 prmreclem2 16616 1arith 16626 isppw2 26262 sqf11 26286 bposlem3 26432 |
Copyright terms: Public domain | W3C validator |