MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressascl Structured version   Visualization version   GIF version

Theorem ressascl 21812
Description: The lifting of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
ressascl.a 𝐴 = (algSc‘𝑊)
ressascl.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
ressascl (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋))

Proof of Theorem ressascl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressascl.x . . . . 5 𝑋 = (𝑊s 𝑆)
2 eqid 2730 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
31, 2resssca 17313 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑋))
43fveq2d 6865 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
5 eqid 2730 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
61, 5ressvsca 17314 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7 eqidd 2731 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑥 = 𝑥)
8 eqid 2730 . . . . 5 (1r𝑊) = (1r𝑊)
91, 8subrg1 20498 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) = (1r𝑋))
106, 7, 9oveq123d 7411 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑥( ·𝑠𝑊)(1r𝑊)) = (𝑥( ·𝑠𝑋)(1r𝑋)))
114, 10mpteq12dv 5197 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠𝑊)(1r𝑊))) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠𝑋)(1r𝑋))))
12 ressascl.a . . 3 𝐴 = (algSc‘𝑊)
13 eqid 2730 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
1412, 2, 13, 5, 8asclfval 21795 . 2 𝐴 = (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠𝑊)(1r𝑊)))
15 eqid 2730 . . 3 (algSc‘𝑋) = (algSc‘𝑋)
16 eqid 2730 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
17 eqid 2730 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
18 eqid 2730 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
19 eqid 2730 . . 3 (1r𝑋) = (1r𝑋)
2015, 16, 17, 18, 19asclfval 21795 . 2 (algSc‘𝑋) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠𝑋)(1r𝑋)))
2111, 14, 203eqtr4g 2790 1 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Scalarcsca 17230   ·𝑠 cvsca 17231  1rcur 20097  SubRingcsubrg 20485  algSccascl 21768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-subg 19062  df-mgp 20057  df-ur 20098  df-ring 20151  df-subrg 20486  df-ascl 21771
This theorem is referenced by:  evlseu  21997
  Copyright terms: Public domain W3C validator