Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressascl | Structured version Visualization version GIF version |
Description: The injection of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
ressascl.a | ⊢ 𝐴 = (algSc‘𝑊) |
ressascl.x | ⊢ 𝑋 = (𝑊 ↾s 𝑆) |
Ref | Expression |
---|---|
ressascl | ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressascl.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑆) | |
2 | eqid 2737 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 1, 2 | resssca 17120 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
4 | 3 | fveq2d 6813 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋))) |
5 | eqid 2737 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | 1, 5 | ressvsca 17121 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑋)) |
7 | eqidd 2738 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑥 = 𝑥) | |
8 | eqid 2737 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
9 | 1, 8 | subrg1 20105 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (1r‘𝑊) = (1r‘𝑋)) |
10 | 6, 7, 9 | oveq123d 7334 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋))) |
11 | 4, 10 | mpteq12dv 5176 | . 2 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋)))) |
12 | ressascl.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
13 | eqid 2737 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
14 | 12, 2, 13, 5, 8 | asclfval 21154 | . 2 ⊢ 𝐴 = (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
15 | eqid 2737 | . . 3 ⊢ (algSc‘𝑋) = (algSc‘𝑋) | |
16 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
17 | eqid 2737 | . . 3 ⊢ (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)) | |
18 | eqid 2737 | . . 3 ⊢ ( ·𝑠 ‘𝑋) = ( ·𝑠 ‘𝑋) | |
19 | eqid 2737 | . . 3 ⊢ (1r‘𝑋) = (1r‘𝑋) | |
20 | 15, 16, 17, 18, 19 | asclfval 21154 | . 2 ⊢ (algSc‘𝑋) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋))) |
21 | 11, 14, 20 | 3eqtr4g 2802 | 1 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5168 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 ↾s cress 17008 Scalarcsca 17032 ·𝑠 cvsca 17033 1rcur 19804 SubRingcsubrg 20091 algSccascl 21130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-subg 18819 df-mgp 19788 df-ur 19805 df-ring 19852 df-subrg 20093 df-ascl 21133 |
This theorem is referenced by: evlseu 21364 |
Copyright terms: Public domain | W3C validator |