![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressascl | Structured version Visualization version GIF version |
Description: The injection of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
ressascl.a | ⊢ 𝐴 = (algSc‘𝑊) |
ressascl.x | ⊢ 𝑋 = (𝑊 ↾s 𝑆) |
Ref | Expression |
---|---|
ressascl | ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressascl.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑆) | |
2 | eqid 2777 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 1, 2 | resssca 16423 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
4 | 3 | fveq2d 6450 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋))) |
5 | eqid 2777 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | 1, 5 | ressvsca 16424 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑋)) |
7 | eqidd 2778 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑥 = 𝑥) | |
8 | eqid 2777 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
9 | 1, 8 | subrg1 19182 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (1r‘𝑊) = (1r‘𝑋)) |
10 | 6, 7, 9 | oveq123d 6943 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋))) |
11 | 4, 10 | mpteq12dv 4969 | . 2 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋)))) |
12 | ressascl.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
13 | eqid 2777 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
14 | 12, 2, 13, 5, 8 | asclfval 19731 | . 2 ⊢ 𝐴 = (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
15 | eqid 2777 | . . 3 ⊢ (algSc‘𝑋) = (algSc‘𝑋) | |
16 | eqid 2777 | . . 3 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
17 | eqid 2777 | . . 3 ⊢ (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)) | |
18 | eqid 2777 | . . 3 ⊢ ( ·𝑠 ‘𝑋) = ( ·𝑠 ‘𝑋) | |
19 | eqid 2777 | . . 3 ⊢ (1r‘𝑋) = (1r‘𝑋) | |
20 | 15, 16, 17, 18, 19 | asclfval 19731 | . 2 ⊢ (algSc‘𝑋) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋))) |
21 | 11, 14, 20 | 3eqtr4g 2838 | 1 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 ↾s cress 16256 Scalarcsca 16341 ·𝑠 cvsca 16342 1rcur 18888 SubRingcsubrg 19168 algSccascl 19708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-subg 17975 df-mgp 18877 df-ur 18889 df-ring 18936 df-subrg 19170 df-ascl 19711 |
This theorem is referenced by: evlseu 19912 |
Copyright terms: Public domain | W3C validator |