Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressascl | Structured version Visualization version GIF version |
Description: The injection of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
ressascl.a | ⊢ 𝐴 = (algSc‘𝑊) |
ressascl.x | ⊢ 𝑋 = (𝑊 ↾s 𝑆) |
Ref | Expression |
---|---|
ressascl | ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressascl.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑆) | |
2 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 1, 2 | resssca 16978 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
4 | 3 | fveq2d 6760 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋))) |
5 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | 1, 5 | ressvsca 16979 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑋)) |
7 | eqidd 2739 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑥 = 𝑥) | |
8 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
9 | 1, 8 | subrg1 19949 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (1r‘𝑊) = (1r‘𝑋)) |
10 | 6, 7, 9 | oveq123d 7276 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋))) |
11 | 4, 10 | mpteq12dv 5161 | . 2 ⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋)))) |
12 | ressascl.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
13 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
14 | 12, 2, 13, 5, 8 | asclfval 20993 | . 2 ⊢ 𝐴 = (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
15 | eqid 2738 | . . 3 ⊢ (algSc‘𝑋) = (algSc‘𝑋) | |
16 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
17 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)) | |
18 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑋) = ( ·𝑠 ‘𝑋) | |
19 | eqid 2738 | . . 3 ⊢ (1r‘𝑋) = (1r‘𝑋) | |
20 | 15, 16, 17, 18, 19 | asclfval 20993 | . 2 ⊢ (algSc‘𝑋) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠 ‘𝑋)(1r‘𝑋))) |
21 | 11, 14, 20 | 3eqtr4g 2804 | 1 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 ·𝑠 cvsca 16892 1rcur 19652 SubRingcsubrg 19935 algSccascl 20969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-ascl 20972 |
This theorem is referenced by: evlseu 21203 |
Copyright terms: Public domain | W3C validator |