MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressascl Structured version   Visualization version   GIF version

Theorem ressascl 21171
Description: The injection of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
ressascl.a 𝐴 = (algSc‘𝑊)
ressascl.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
ressascl (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋))

Proof of Theorem ressascl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressascl.x . . . . 5 𝑋 = (𝑊s 𝑆)
2 eqid 2737 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
31, 2resssca 17120 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑋))
43fveq2d 6813 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
5 eqid 2737 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
61, 5ressvsca 17121 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7 eqidd 2738 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑥 = 𝑥)
8 eqid 2737 . . . . 5 (1r𝑊) = (1r𝑊)
91, 8subrg1 20105 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) = (1r𝑋))
106, 7, 9oveq123d 7334 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑥( ·𝑠𝑊)(1r𝑊)) = (𝑥( ·𝑠𝑋)(1r𝑋)))
114, 10mpteq12dv 5176 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠𝑊)(1r𝑊))) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠𝑋)(1r𝑋))))
12 ressascl.a . . 3 𝐴 = (algSc‘𝑊)
13 eqid 2737 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
1412, 2, 13, 5, 8asclfval 21154 . 2 𝐴 = (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑥( ·𝑠𝑊)(1r𝑊)))
15 eqid 2737 . . 3 (algSc‘𝑋) = (algSc‘𝑋)
16 eqid 2737 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
17 eqid 2737 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
18 eqid 2737 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
19 eqid 2737 . . 3 (1r𝑋) = (1r𝑋)
2015, 16, 17, 18, 19asclfval 21154 . 2 (algSc‘𝑋) = (𝑥 ∈ (Base‘(Scalar‘𝑋)) ↦ (𝑥( ·𝑠𝑋)(1r𝑋)))
2111, 14, 203eqtr4g 2802 1 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = (algSc‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cmpt 5168  cfv 6463  (class class class)co 7313  Basecbs 16979  s cress 17008  Scalarcsca 17032   ·𝑠 cvsca 17033  1rcur 19804  SubRingcsubrg 20091  algSccascl 21130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-sca 17045  df-vsca 17046  df-0g 17219  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-subg 18819  df-mgp 19788  df-ur 19805  df-ring 19852  df-subrg 20093  df-ascl 21133
This theorem is referenced by:  evlseu  21364
  Copyright terms: Public domain W3C validator