Proof of Theorem lhp2atnle
Step | Hyp | Ref
| Expression |
1 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ HL) |
2 | | hlatl 37374 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
3 | 1, 2 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
4 | | simp3l 1200 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ∈ 𝐴) |
5 | | eqid 2738 |
. . . 4
⊢
(0.‘𝐾) =
(0.‘𝐾) |
6 | | lhp2atnle.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 5, 6 | atn0 37322 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴) → 𝑉 ≠ (0.‘𝐾)) |
8 | 3, 4, 7 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ≠ (0.‘𝐾)) |
9 | 1 | hllatd 37378 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ Lat) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
11 | 10, 6 | atbase 37303 |
. . . . . 6
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
12 | 4, 11 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ∈ (Base‘𝐾)) |
13 | | simp12l 1285 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
14 | | simp2l 1198 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑈 ∈ 𝐴) |
15 | | lhp2atnle.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
16 | 10, 15, 6 | hlatjcl 37381 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) |
17 | 1, 13, 14, 16 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) |
18 | | lhp2atnle.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
19 | | eqid 2738 |
. . . . . 6
⊢
(meet‘𝐾) =
(meet‘𝐾) |
20 | 10, 18, 19 | latleeqm2 18186 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) → (𝑉 ≤ (𝑃 ∨ 𝑈) ↔ ((𝑃 ∨ 𝑈)(meet‘𝐾)𝑉) = 𝑉)) |
21 | 9, 12, 17, 20 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑉 ≤ (𝑃 ∨ 𝑈) ↔ ((𝑃 ∨ 𝑈)(meet‘𝐾)𝑉) = 𝑉)) |
22 | | lhp2atnle.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
23 | 18, 15, 19, 5, 6, 22 | lhp2at0 38046 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ((𝑃 ∨ 𝑈)(meet‘𝐾)𝑉) = (0.‘𝐾)) |
24 | | eqeq1 2742 |
. . . . 5
⊢ (((𝑃 ∨ 𝑈)(meet‘𝐾)𝑉) = 𝑉 → (((𝑃 ∨ 𝑈)(meet‘𝐾)𝑉) = (0.‘𝐾) ↔ 𝑉 = (0.‘𝐾))) |
25 | 23, 24 | syl5ibcom 244 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (((𝑃 ∨ 𝑈)(meet‘𝐾)𝑉) = 𝑉 → 𝑉 = (0.‘𝐾))) |
26 | 21, 25 | sylbid 239 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑉 ≤ (𝑃 ∨ 𝑈) → 𝑉 = (0.‘𝐾))) |
27 | 26 | necon3ad 2956 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑉 ≠ (0.‘𝐾) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈))) |
28 | 8, 27 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |