Proof of Theorem ltrnnidn
| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 2 | | hlatl 39361 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
| 4 | | simp1 1137 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 5 | | simp2l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 6 | | simp2r 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ≠ ( I ↾ 𝐵)) |
| 7 | | ltrnnidn.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 8 | | ltrnnidn.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | | ltrnnidn.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 10 | | ltrnnidn.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 11 | | eqid 2737 |
. . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
| 12 | 7, 8, 9, 10, 11 | trlnidat 40175 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (((trL‘𝐾)‘𝑊)‘𝐹) ∈ 𝐴) |
| 13 | 4, 5, 6, 12 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘𝐹) ∈ 𝐴) |
| 14 | | eqid 2737 |
. . . 4
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 15 | 14, 8 | atn0 39309 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧
(((trL‘𝐾)‘𝑊)‘𝐹) ∈ 𝐴) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (0.‘𝐾)) |
| 16 | 3, 13, 15 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (0.‘𝐾)) |
| 17 | | simpl1 1192 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 18 | | simpl3 1194 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 19 | | simpl2l 1227 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
| 20 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
| 21 | | ltrnnidn.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 22 | 21, 14, 8, 9, 10, 11 | trl0 40172 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (((trL‘𝐾)‘𝑊)‘𝐹) = (0.‘𝐾)) |
| 23 | 17, 18, 19, 20, 22 | syl112anc 1376 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (((trL‘𝐾)‘𝑊)‘𝐹) = (0.‘𝐾)) |
| 24 | 23 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) = 𝑃 → (((trL‘𝐾)‘𝑊)‘𝐹) = (0.‘𝐾))) |
| 25 | 24 | necon3d 2961 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝐹) ≠ (0.‘𝐾) → (𝐹‘𝑃) ≠ 𝑃)) |
| 26 | 16, 25 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ≠ 𝑃) |