MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucpw2 Structured version   Visualization version   GIF version

Theorem alephsucpw2 10152
Description: The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10717 or gchaleph2 10713.) The transposed form alephsucpw 10611 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsucpw2 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)

Proof of Theorem alephsucpw2
StepHypRef Expression
1 fvex 6918 . . 3 (ℵ‘𝐴) ∈ V
21canth2 9171 . 2 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
3 alephnbtwn2 10113 . 2 ¬ ((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
42, 3mptnan 1767 1 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  𝒫 cpw 4599   class class class wbr 5142  suc csuc 6385  cfv 6560  csdm 8985  cale 9977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-har 9598  df-card 9980  df-aleph 9981
This theorem is referenced by:  alephsucpw  10611  gchaleph  10712
  Copyright terms: Public domain W3C validator