| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucpw2 | Structured version Visualization version GIF version | ||
| Description: The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10574 or gchaleph2 10570.) The transposed form alephsucpw 10468 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsucpw2 | ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . 3 ⊢ (ℵ‘𝐴) ∈ V | |
| 2 | 1 | canth2 9050 | . 2 ⊢ (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) |
| 3 | alephnbtwn2 9970 | . 2 ⊢ ¬ ((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | |
| 4 | 2, 3 | mptnan 1769 | 1 ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 𝒫 cpw 4549 class class class wbr 5093 suc csuc 6313 ‘cfv 6486 ≺ csdm 8874 ℵcale 9836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-har 9450 df-card 9839 df-aleph 9840 |
| This theorem is referenced by: alephsucpw 10468 gchaleph 10569 |
| Copyright terms: Public domain | W3C validator |