| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucpw2 | Structured version Visualization version GIF version | ||
| Description: The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10636 or gchaleph2 10632.) The transposed form alephsucpw 10530 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsucpw2 | ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . 3 ⊢ (ℵ‘𝐴) ∈ V | |
| 2 | 1 | canth2 9100 | . 2 ⊢ (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) |
| 3 | alephnbtwn2 10032 | . 2 ⊢ ¬ ((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | |
| 4 | 2, 3 | mptnan 1768 | 1 ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 𝒫 cpw 4566 class class class wbr 5110 suc csuc 6337 ‘cfv 6514 ≺ csdm 8920 ℵcale 9896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-har 9517 df-card 9899 df-aleph 9900 |
| This theorem is referenced by: alephsucpw 10530 gchaleph 10631 |
| Copyright terms: Public domain | W3C validator |