![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme13 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.) |
Ref | Expression |
---|---|
cdleme12.l | ⊢ ≤ = (le‘𝐾) |
cdleme12.j | ⊢ ∨ = (join‘𝐾) |
cdleme12.m | ⊢ ∧ = (meet‘𝐾) |
cdleme12.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme12.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme12.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme12.g | ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme13 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme12.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme12.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme12.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | cdleme12.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdleme12.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleme12.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | cdleme12.f | . . . 4 ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
8 | cdleme12.g | . . . 4 ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme12 40268 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = 𝑈) |
10 | 9, 6 | eqtrdi 2793 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
11 | simp1l 1198 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝐾 ∈ HL) | |
12 | 11 | hllatd 39360 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝐾 ∈ Lat) |
13 | simp21l 1291 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑃 ∈ 𝐴) | |
14 | simp22 1208 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑄 ∈ 𝐴) | |
15 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | 15, 2, 4 | hlatjcl 39363 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
17 | 11, 13, 14, 16 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
18 | simp1r 1199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑊 ∈ 𝐻) | |
19 | 15, 5 | lhpbase 39995 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
20 | 18, 19 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑊 ∈ (Base‘𝐾)) |
21 | 15, 1, 3 | latmle1 18531 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
22 | 12, 17, 20, 21 | syl3anc 1372 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
23 | 10, 22 | eqbrtrd 5173 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 lecple 17314 joincjn 18378 meetcmee 18379 Latclat 18498 Atomscatm 39259 HLchlt 39346 LHypclh 39981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-p0 18492 df-p1 18493 df-lat 18499 df-clat 18566 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-psubsp 39500 df-pmap 39501 df-padd 39793 df-lhyp 39985 |
This theorem is referenced by: cdleme14 40270 |
Copyright terms: Public domain | W3C validator |