| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme13 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.) |
| Ref | Expression |
|---|---|
| cdleme12.l | ⊢ ≤ = (le‘𝐾) |
| cdleme12.j | ⊢ ∨ = (join‘𝐾) |
| cdleme12.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme12.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme12.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme12.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| cdleme12.g | ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
| Ref | Expression |
|---|---|
| cdleme13 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme12.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme12.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleme12.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleme12.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdleme12.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdleme12.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 7 | cdleme12.f | . . . 4 ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
| 8 | cdleme12.g | . . . 4 ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme12 40258 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = 𝑈) |
| 10 | 9, 6 | eqtrdi 2780 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| 11 | simp1l 1198 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝐾 ∈ HL) | |
| 12 | 11 | hllatd 39350 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝐾 ∈ Lat) |
| 13 | simp21l 1291 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑃 ∈ 𝐴) | |
| 14 | simp22 1208 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑄 ∈ 𝐴) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 16 | 15, 2, 4 | hlatjcl 39353 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 17 | 11, 13, 14, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 18 | simp1r 1199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑊 ∈ 𝐻) | |
| 19 | 15, 5 | lhpbase 39985 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → 𝑊 ∈ (Base‘𝐾)) |
| 21 | 15, 1, 3 | latmle1 18405 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
| 22 | 12, 17, 20, 21 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
| 23 | 10, 22 | eqbrtrd 5124 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18252 meetcmee 18253 Latclat 18372 Atomscatm 39249 HLchlt 39336 LHypclh 39971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-psubsp 39490 df-pmap 39491 df-padd 39783 df-lhyp 39975 |
| This theorem is referenced by: cdleme14 40260 |
| Copyright terms: Public domain | W3C validator |