Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme13 Structured version   Visualization version   GIF version

Theorem cdleme13 39777
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l ≀ = (leβ€˜πΎ)
cdleme12.j ∨ = (joinβ€˜πΎ)
cdleme12.m ∧ = (meetβ€˜πΎ)
cdleme12.a 𝐴 = (Atomsβ€˜πΎ)
cdleme12.h 𝐻 = (LHypβ€˜πΎ)
cdleme12.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme12.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme12.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
Assertion
Ref Expression
cdleme13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≀ (𝑃 ∨ 𝑄))

Proof of Theorem cdleme13
StepHypRef Expression
1 cdleme12.l . . . 4 ≀ = (leβ€˜πΎ)
2 cdleme12.j . . . 4 ∨ = (joinβ€˜πΎ)
3 cdleme12.m . . . 4 ∧ = (meetβ€˜πΎ)
4 cdleme12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 cdleme12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
6 cdleme12.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
7 cdleme12.f . . . 4 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
8 cdleme12.g . . . 4 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
91, 2, 3, 4, 5, 6, 7, 8cdleme12 39776 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = π‘ˆ)
109, 6eqtrdi 2784 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
11 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝐾 ∈ HL)
1211hllatd 38868 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝐾 ∈ Lat)
13 simp21l 1287 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝑃 ∈ 𝐴)
14 simp22 1204 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝑄 ∈ 𝐴)
15 eqid 2728 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1615, 2, 4hlatjcl 38871 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
1711, 13, 14, 16syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
18 simp1r 1195 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ π‘Š ∈ 𝐻)
1915, 5lhpbase 39503 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2018, 19syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
2115, 1, 3latmle1 18463 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
2212, 17, 20, 21syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
2310, 22eqbrtrd 5174 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≀ (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  lecple 17247  joincjn 18310  meetcmee 18311  Latclat 18430  Atomscatm 38767  HLchlt 38854  LHypclh 39489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493
This theorem is referenced by:  cdleme14  39778
  Copyright terms: Public domain W3C validator