Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme13 Structured version   Visualization version   GIF version

Theorem cdleme13 38781
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l ≀ = (leβ€˜πΎ)
cdleme12.j ∨ = (joinβ€˜πΎ)
cdleme12.m ∧ = (meetβ€˜πΎ)
cdleme12.a 𝐴 = (Atomsβ€˜πΎ)
cdleme12.h 𝐻 = (LHypβ€˜πΎ)
cdleme12.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme12.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme12.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
Assertion
Ref Expression
cdleme13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≀ (𝑃 ∨ 𝑄))

Proof of Theorem cdleme13
StepHypRef Expression
1 cdleme12.l . . . 4 ≀ = (leβ€˜πΎ)
2 cdleme12.j . . . 4 ∨ = (joinβ€˜πΎ)
3 cdleme12.m . . . 4 ∧ = (meetβ€˜πΎ)
4 cdleme12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 cdleme12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
6 cdleme12.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
7 cdleme12.f . . . 4 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
8 cdleme12.g . . . 4 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
91, 2, 3, 4, 5, 6, 7, 8cdleme12 38780 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = π‘ˆ)
109, 6eqtrdi 2789 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
11 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝐾 ∈ HL)
1211hllatd 37872 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝐾 ∈ Lat)
13 simp21l 1291 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝑃 ∈ 𝐴)
14 simp22 1208 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝑄 ∈ 𝐴)
15 eqid 2733 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1615, 2, 4hlatjcl 37875 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
1711, 13, 14, 16syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
18 simp1r 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ π‘Š ∈ 𝐻)
1915, 5lhpbase 38507 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2018, 19syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
2115, 1, 3latmle1 18358 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
2212, 17, 20, 21syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
2310, 22eqbrtrd 5128 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≀ (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-psubsp 38012  df-pmap 38013  df-padd 38305  df-lhyp 38497
This theorem is referenced by:  cdleme14  38782
  Copyright terms: Public domain W3C validator