Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16g Structured version   Visualization version   GIF version

Theorem cdleme16g 39813
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, Eq. (1). 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ w=(f(s) ∨ f(t)) ∧ w. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l ≀ = (leβ€˜πΎ)
cdleme12.j ∨ = (joinβ€˜πΎ)
cdleme12.m ∧ = (meetβ€˜πΎ)
cdleme12.a 𝐴 = (Atomsβ€˜πΎ)
cdleme12.h 𝐻 = (LHypβ€˜πΎ)
cdleme12.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme12.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme12.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
Assertion
Ref Expression
cdleme16g ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))

Proof of Theorem cdleme16g
StepHypRef Expression
1 cdleme12.l . . 3 ≀ = (leβ€˜πΎ)
2 cdleme12.j . . 3 ∨ = (joinβ€˜πΎ)
3 cdleme12.m . . 3 ∧ = (meetβ€˜πΎ)
4 cdleme12.a . . 3 𝐴 = (Atomsβ€˜πΎ)
5 cdleme12.h . . 3 𝐻 = (LHypβ€˜πΎ)
6 cdleme12.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
7 cdleme12.f . . 3 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
8 cdleme12.g . . 3 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
91, 2, 3, 4, 5, 6, 7, 8cdleme16e 39811 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) = ((𝑆 ∨ 𝑇) ∧ π‘Š))
101, 2, 3, 4, 5, 6, 7, 8cdleme16f 39812 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
119, 10eqtr3d 2767 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  lecple 17239  joincjn 18302  meetcmee 18303  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027  df-lplanes 39028  df-lvols 39029  df-lines 39030  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517
This theorem is referenced by:  cdleme16  39814
  Copyright terms: Public domain W3C validator