![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemeg47b | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 1-Apr-2013.) |
Ref | Expression |
---|---|
cdlemef47.b | β’ π΅ = (BaseβπΎ) |
cdlemef47.l | β’ β€ = (leβπΎ) |
cdlemef47.j | β’ β¨ = (joinβπΎ) |
cdlemef47.m | β’ β§ = (meetβπΎ) |
cdlemef47.a | β’ π΄ = (AtomsβπΎ) |
cdlemef47.h | β’ π» = (LHypβπΎ) |
cdlemef47.v | β’ π = ((π β¨ π) β§ π) |
cdlemef47.n | β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
cdlemefs47.o | β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
cdlemef47.g | β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
Ref | Expression |
---|---|
cdlemeg47b | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef47.j | . . 3 β’ β¨ = (joinβπΎ) | |
2 | cdlemef47.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | 1, 2 | cdleme46f2g2 39352 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π))) |
4 | cdlemef47.b | . . 3 β’ π΅ = (BaseβπΎ) | |
5 | cdlemef47.l | . . 3 β’ β€ = (leβπΎ) | |
6 | cdlemef47.m | . . 3 β’ β§ = (meetβπΎ) | |
7 | cdlemef47.h | . . 3 β’ π» = (LHypβπΎ) | |
8 | cdlemef47.v | . . 3 β’ π = ((π β¨ π) β§ π) | |
9 | cdlemef47.n | . . 3 β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) | |
10 | cdlemef47.g | . . 3 β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) | |
11 | 4, 5, 1, 6, 2, 7, 8, 9, 10 | cdlemefr45 39286 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
12 | 3, 11 | syl 17 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β¦csb 3892 ifcif 4527 class class class wbr 5147 β¦ cmpt 5230 βcfv 6540 β©crio 7360 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Atomscatm 38121 HLchlt 38208 LHypclh 38843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 |
This theorem is referenced by: cdlemeg47rv2 39369 cdlemeg46bOLDN 39371 cdlemeg46c 39372 cdlemeg46rjgN 39381 |
Copyright terms: Public domain | W3C validator |