![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemeg47b | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 1-Apr-2013.) |
Ref | Expression |
---|---|
cdlemef47.b | β’ π΅ = (BaseβπΎ) |
cdlemef47.l | β’ β€ = (leβπΎ) |
cdlemef47.j | β’ β¨ = (joinβπΎ) |
cdlemef47.m | β’ β§ = (meetβπΎ) |
cdlemef47.a | β’ π΄ = (AtomsβπΎ) |
cdlemef47.h | β’ π» = (LHypβπΎ) |
cdlemef47.v | β’ π = ((π β¨ π) β§ π) |
cdlemef47.n | β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
cdlemefs47.o | β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
cdlemef47.g | β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
Ref | Expression |
---|---|
cdlemeg47b | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef47.j | . . 3 β’ β¨ = (joinβπΎ) | |
2 | cdlemef47.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | 1, 2 | cdleme46f2g2 39877 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π))) |
4 | cdlemef47.b | . . 3 β’ π΅ = (BaseβπΎ) | |
5 | cdlemef47.l | . . 3 β’ β€ = (leβπΎ) | |
6 | cdlemef47.m | . . 3 β’ β§ = (meetβπΎ) | |
7 | cdlemef47.h | . . 3 β’ π» = (LHypβπΎ) | |
8 | cdlemef47.v | . . 3 β’ π = ((π β¨ π) β§ π) | |
9 | cdlemef47.n | . . 3 β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) | |
10 | cdlemef47.g | . . 3 β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) | |
11 | 4, 5, 1, 6, 2, 7, 8, 9, 10 | cdlemefr45 39811 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
12 | 3, 11 | syl 17 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2934 βwral 3055 β¦csb 3888 ifcif 4523 class class class wbr 5141 β¦ cmpt 5224 βcfv 6537 β©crio 7360 (class class class)co 7405 Basecbs 17153 lecple 17213 joincjn 18276 meetcmee 18277 Atomscatm 38646 HLchlt 38733 LHypclh 39368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 df-lines 38885 df-psubsp 38887 df-pmap 38888 df-padd 39180 df-lhyp 39372 |
This theorem is referenced by: cdlemeg47rv2 39894 cdlemeg46bOLDN 39896 cdlemeg46c 39897 cdlemeg46rjgN 39906 |
Copyright terms: Public domain | W3C validator |