![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg17irq | Structured version Visualization version GIF version |
Description: cdlemg17ir 40198 with π and π swapped. (Contributed by NM, 13-May-2013.) |
Ref | Expression |
---|---|
cdlemg12.l | β’ β€ = (leβπΎ) |
cdlemg12.j | β’ β¨ = (joinβπΎ) |
cdlemg12.m | β’ β§ = (meetβπΎ) |
cdlemg12.a | β’ π΄ = (AtomsβπΎ) |
cdlemg12.h | β’ π» = (LHypβπΎ) |
cdlemg12.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemg12b.r | β’ π = ((trLβπΎ)βπ) |
Ref | Expression |
---|---|
cdlemg17irq | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | . . 3 β’ β€ = (leβπΎ) | |
2 | cdlemg12.j | . . 3 β’ β¨ = (joinβπΎ) | |
3 | cdlemg12.m | . . 3 β’ β§ = (meetβπΎ) | |
4 | cdlemg12.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | cdlemg12.h | . . 3 β’ π» = (LHypβπΎ) | |
6 | cdlemg12.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
7 | cdlemg12b.r | . . 3 β’ π = ((trLβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | cdlemg17pq 40200 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π))))) |
9 | 1, 2, 3, 4, 5, 6, 7 | cdlemg17ir 40198 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
10 | 8, 9 | syl 17 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 βwrex 3060 class class class wbr 5143 βcfv 6542 (class class class)co 7415 lecple 17237 joincjn 18300 meetcmee 18301 Atomscatm 38790 HLchlt 38877 LHypclh 39512 LTrncltrn 39629 trLctrl 39686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-map 8843 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-oposet 38703 df-ol 38705 df-oml 38706 df-covers 38793 df-ats 38794 df-atl 38825 df-cvlat 38849 df-hlat 38878 df-psubsp 39031 df-pmap 39032 df-padd 39324 df-lhyp 39516 df-laut 39517 df-ldil 39632 df-ltrn 39633 df-trl 39687 |
This theorem is referenced by: cdlemg18d 40209 |
Copyright terms: Public domain | W3C validator |