![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg17jq | Structured version Visualization version GIF version |
Description: cdlemg17j 40615 with 𝑃 and 𝑄 swapped. (Contributed by NM, 13-May-2013.) |
Ref | Expression |
---|---|
cdlemg12.l | ⊢ ≤ = (le‘𝐾) |
cdlemg12.j | ⊢ ∨ = (join‘𝐾) |
cdlemg12.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg12.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg12.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg12b.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg17jq | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑄)) = (𝐹‘(𝐺‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg12.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | cdlemg12.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | cdlemg12.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg12.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg12.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdlemg12b.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | cdlemg17pq 40616 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ≠ 𝑃) ∧ ((𝐺‘𝑄) ≠ 𝑄 ∧ (𝑅‘𝐺) ≤ (𝑄 ∨ 𝑃) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑄 ∨ 𝑟) = (𝑃 ∨ 𝑟))))) |
9 | 1, 2, 3, 4, 5, 6, 7 | cdlemg17j 40615 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ≠ 𝑃) ∧ ((𝐺‘𝑄) ≠ 𝑄 ∧ (𝑅‘𝐺) ≤ (𝑄 ∨ 𝑃) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑄 ∨ 𝑟) = (𝑃 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑄)) = (𝐹‘(𝐺‘𝑄))) |
10 | 8, 9 | syl 17 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑄)) = (𝐹‘(𝐺‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 ∃wrex 3066 class class class wbr 5149 ‘cfv 6558 (class class class)co 7425 lecple 17294 joincjn 18357 meetcmee 18358 Atomscatm 39206 HLchlt 39293 LHypclh 39928 LTrncltrn 40045 trLctrl 40102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-riotaBAD 38896 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-1st 8007 df-2nd 8008 df-undef 8291 df-map 8861 df-proset 18341 df-poset 18359 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39119 df-ol 39121 df-oml 39122 df-covers 39209 df-ats 39210 df-atl 39241 df-cvlat 39265 df-hlat 39294 df-llines 39442 df-lplanes 39443 df-lvols 39444 df-lines 39445 df-psubsp 39447 df-pmap 39448 df-padd 39740 df-lhyp 39932 df-laut 39933 df-ldil 40048 df-ltrn 40049 df-trl 40103 |
This theorem is referenced by: cdlemg17 40621 |
Copyright terms: Public domain | W3C validator |