![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg3a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma G in [Crawley] p. 116, line 19. Show p ∨ q = p ∨ u. TODO: reformat cdleme0cp 38680 to match this, then replace with cdleme0cp 38680. (Contributed by NM, 19-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg3.l | ⊢ ≤ = (le‘𝐾) |
cdlemg3.j | ⊢ ∨ = (join‘𝐾) |
cdlemg3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg3.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemg3a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | cdlemg3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | cdlemg3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg3.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | cdleme8 38716 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
8 | 7 | eqcomd 2743 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 lecple 17141 joincjn 18201 meetcmee 18202 Atomscatm 37728 HLchlt 37815 LHypclh 38450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-proset 18185 df-poset 18203 df-plt 18220 df-lub 18236 df-glb 18237 df-join 18238 df-meet 18239 df-p0 18315 df-p1 18316 df-lat 18322 df-clat 18389 df-oposet 37641 df-ol 37643 df-oml 37644 df-covers 37731 df-ats 37732 df-atl 37763 df-cvlat 37787 df-hlat 37816 df-psubsp 37969 df-pmap 37970 df-padd 38262 df-lhyp 38454 |
This theorem is referenced by: cdlemg9a 39098 cdlemg9b 39099 cdlemg12b 39110 |
Copyright terms: Public domain | W3C validator |