| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg3a | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma G in [Crawley] p. 116, line 19. Show p ∨ q = p ∨ u. TODO: reformat cdleme0cp 40200 to match this, then replace with cdleme0cp 40200. (Contributed by NM, 19-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemg3.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg3.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg3.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg3.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdlemg3a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdlemg3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdlemg3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdlemg3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdlemg3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdlemg3.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | cdleme8 40236 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
| 8 | 7 | eqcomd 2736 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 lecple 17233 joincjn 18278 meetcmee 18279 Atomscatm 39248 HLchlt 39335 LHypclh 39970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 39161 df-ol 39163 df-oml 39164 df-covers 39251 df-ats 39252 df-atl 39283 df-cvlat 39307 df-hlat 39336 df-psubsp 39489 df-pmap 39490 df-padd 39782 df-lhyp 39974 |
| This theorem is referenced by: cdlemg9a 40618 cdlemg9b 40619 cdlemg12b 40630 |
| Copyright terms: Public domain | W3C validator |