![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg3a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma G in [Crawley] p. 116, line 19. Show p ∨ q = p ∨ u. TODO: reformat cdleme0cp 39598 to match this, then replace with cdleme0cp 39598. (Contributed by NM, 19-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg3.l | ⊢ ≤ = (le‘𝐾) |
cdlemg3.j | ⊢ ∨ = (join‘𝐾) |
cdlemg3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg3.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemg3a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | cdlemg3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | cdlemg3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg3.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | cdleme8 39634 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
8 | 7 | eqcomd 2732 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 lecple 17213 joincjn 18276 meetcmee 18277 Atomscatm 38646 HLchlt 38733 LHypclh 39368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 df-psubsp 38887 df-pmap 38888 df-padd 39180 df-lhyp 39372 |
This theorem is referenced by: cdlemg9a 40016 cdlemg9b 40017 cdlemg12b 40028 |
Copyright terms: Public domain | W3C validator |