Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg3a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma G in [Crawley] p. 116, line 19. Show p ∨ q = p ∨ u. TODO: reformat cdleme0cp 37991 to match this, then replace with cdleme0cp 37991. (Contributed by NM, 19-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg3.l | ⊢ ≤ = (le‘𝐾) |
cdlemg3.j | ⊢ ∨ = (join‘𝐾) |
cdlemg3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg3.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemg3a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | cdlemg3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | cdlemg3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg3.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | cdleme8 38027 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
8 | 7 | eqcomd 2744 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 class class class wbr 5067 ‘cfv 6397 (class class class)co 7231 lecple 16833 joincjn 17842 meetcmee 17843 Atomscatm 37040 HLchlt 37127 LHypclh 37761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-id 5469 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-1st 7779 df-2nd 7780 df-proset 17826 df-poset 17844 df-plt 17860 df-lub 17876 df-glb 17877 df-join 17878 df-meet 17879 df-p0 17955 df-p1 17956 df-lat 17962 df-clat 18029 df-oposet 36953 df-ol 36955 df-oml 36956 df-covers 37043 df-ats 37044 df-atl 37075 df-cvlat 37099 df-hlat 37128 df-psubsp 37280 df-pmap 37281 df-padd 37573 df-lhyp 37765 |
This theorem is referenced by: cdlemg9a 38409 cdlemg9b 38410 cdlemg12b 38421 |
Copyright terms: Public domain | W3C validator |