![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2jOLDN | Structured version Visualization version GIF version |
Description: TODO: Replace this with ltrnj 40038. (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemg2inv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2inv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2j.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2j.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2j.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cdlemg2jOLDN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | cdlemg2j.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2j.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | eqid 2734 | . 2 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | cdlemg2j.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2inv.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2inv.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2734 | . 2 ⊢ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊) = ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊) | |
9 | eqid 2734 | . 2 ⊢ ((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) = ((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) | |
10 | eqid 2734 | . 2 ⊢ ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))) = ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))) | |
11 | eqid 2734 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊)))) ∨ (𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊)))) ∨ (𝑥(meet‘𝐾)𝑊)))), 𝑥)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemg2jlemOLDN 40499 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∀wral 3063 ⦋csb 3915 ifcif 4548 class class class wbr 5169 ↦ cmpt 5252 ‘cfv 6572 ℩crio 7400 (class class class)co 7445 Basecbs 17253 lecple 17313 joincjn 18376 meetcmee 18377 Atomscatm 39168 HLchlt 39255 LHypclh 39890 LTrncltrn 40007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-riotaBAD 38858 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-iin 5022 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-1st 8026 df-2nd 8027 df-undef 8310 df-map 8882 df-proset 18360 df-poset 18378 df-plt 18395 df-lub 18411 df-glb 18412 df-join 18413 df-meet 18414 df-p0 18490 df-p1 18491 df-lat 18497 df-clat 18564 df-oposet 39081 df-ol 39083 df-oml 39084 df-covers 39171 df-ats 39172 df-atl 39203 df-cvlat 39227 df-hlat 39256 df-llines 39404 df-lplanes 39405 df-lvols 39406 df-lines 39407 df-psubsp 39409 df-pmap 39410 df-padd 39702 df-lhyp 39894 df-laut 39895 df-ldil 40010 df-ltrn 40011 df-trl 40065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |