Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2jOLDN Structured version   Visualization version   GIF version

Theorem cdlemg2jOLDN 38209
Description: TODO: Replace this with ltrnj 37743. (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg2inv.h 𝐻 = (LHyp‘𝐾)
cdlemg2inv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2j.l = (le‘𝐾)
cdlemg2j.j = (join‘𝐾)
cdlemg2j.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemg2jOLDN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝐹‘(𝑃 𝑄)) = ((𝐹𝑃) (𝐹𝑄)))

Proof of Theorem cdlemg2jOLDN
Dummy variables 𝑞 𝑝 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 (Base‘𝐾) = (Base‘𝐾)
2 cdlemg2j.l . 2 = (le‘𝐾)
3 cdlemg2j.j . 2 = (join‘𝐾)
4 eqid 2758 . 2 (meet‘𝐾) = (meet‘𝐾)
5 cdlemg2j.a . 2 𝐴 = (Atoms‘𝐾)
6 cdlemg2inv.h . 2 𝐻 = (LHyp‘𝐾)
7 cdlemg2inv.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2758 . 2 ((𝑝 𝑞)(meet‘𝐾)𝑊) = ((𝑝 𝑞)(meet‘𝐾)𝑊)
9 eqid 2758 . 2 ((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊))) = ((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊)))
10 eqid 2758 . 2 ((𝑝 𝑞)(meet‘𝐾)(((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊))) ((𝑠 𝑡)(meet‘𝐾)𝑊))) = ((𝑝 𝑞)(meet‘𝐾)(((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊))) ((𝑠 𝑡)(meet‘𝐾)𝑊)))
11 eqid 2758 . 2 (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = ((𝑝 𝑞)(meet‘𝐾)(((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊))) ((𝑠 𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊)))) (𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = ((𝑝 𝑞)(meet‘𝐾)(((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊))) ((𝑠 𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡 ((𝑝 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ((𝑝 𝑡)(meet‘𝐾)𝑊)))) (𝑥(meet‘𝐾)𝑊)))), 𝑥))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemg2jlemOLDN 38204 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝐹‘(𝑃 𝑄)) = ((𝐹𝑃) (𝐹𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  csb 3807  ifcif 4423   class class class wbr 5036  cmpt 5116  cfv 6340  crio 7113  (class class class)co 7156  Basecbs 16555  lecple 16644  joincjn 17634  meetcmee 17635  Atomscatm 36874  HLchlt 36961  LHypclh 37595  LTrncltrn 37712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-riotaBAD 36564
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-undef 7955  df-map 8424  df-proset 17618  df-poset 17636  df-plt 17648  df-lub 17664  df-glb 17665  df-join 17666  df-meet 17667  df-p0 17729  df-p1 17730  df-lat 17736  df-clat 17798  df-oposet 36787  df-ol 36789  df-oml 36790  df-covers 36877  df-ats 36878  df-atl 36909  df-cvlat 36933  df-hlat 36962  df-llines 37109  df-lplanes 37110  df-lvols 37111  df-lines 37112  df-psubsp 37114  df-pmap 37115  df-padd 37407  df-lhyp 37599  df-laut 37600  df-ldil 37715  df-ltrn 37716  df-trl 37770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator