Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2jOLDN | Structured version Visualization version GIF version |
Description: TODO: Replace this with ltrnj 37743. (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemg2inv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2inv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2j.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2j.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2j.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cdlemg2jOLDN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | cdlemg2j.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2j.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | eqid 2758 | . 2 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | cdlemg2j.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2inv.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2inv.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2758 | . 2 ⊢ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊) = ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊) | |
9 | eqid 2758 | . 2 ⊢ ((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) = ((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) | |
10 | eqid 2758 | . 2 ⊢ ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))) = ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))) | |
11 | eqid 2758 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊)))) ∨ (𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞)(meet‘𝐾)(((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊))) ∨ ((𝑠 ∨ 𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑞 ∨ ((𝑝 ∨ 𝑡)(meet‘𝐾)𝑊)))) ∨ (𝑥(meet‘𝐾)𝑊)))), 𝑥)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemg2jlemOLDN 38204 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ⦋csb 3807 ifcif 4423 class class class wbr 5036 ↦ cmpt 5116 ‘cfv 6340 ℩crio 7113 (class class class)co 7156 Basecbs 16555 lecple 16644 joincjn 17634 meetcmee 17635 Atomscatm 36874 HLchlt 36961 LHypclh 37595 LTrncltrn 37712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-riotaBAD 36564 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-undef 7955 df-map 8424 df-proset 17618 df-poset 17636 df-plt 17648 df-lub 17664 df-glb 17665 df-join 17666 df-meet 17667 df-p0 17729 df-p1 17730 df-lat 17736 df-clat 17798 df-oposet 36787 df-ol 36789 df-oml 36790 df-covers 36877 df-ats 36878 df-atl 36909 df-cvlat 36933 df-hlat 36962 df-llines 37109 df-lplanes 37110 df-lvols 37111 df-lines 37112 df-psubsp 37114 df-pmap 37115 df-padd 37407 df-lhyp 37599 df-laut 37600 df-ldil 37715 df-ltrn 37716 df-trl 37770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |