Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0cp Structured version   Visualization version   GIF version

Theorem cdleme0cp 39691
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: Reformat as in cdlemg3a 40074- swap consequent equality; make antecedent use df-3an 1086. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0cp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑈) = (𝑃 𝑄))

Proof of Theorem cdleme0cp
StepHypRef Expression
1 cdleme0.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
21oveq2i 7435 . 2 (𝑃 𝑈) = (𝑃 ((𝑃 𝑄) 𝑊))
3 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝐾 ∈ HL)
4 simprll 777 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝑃𝐴)
5 hllat 38839 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝐾 ∈ Lat)
7 eqid 2727 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 38765 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
104, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝑃 ∈ (Base‘𝐾))
11 simprr 771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝑄𝐴)
127, 8atbase 38765 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝑄 ∈ (Base‘𝐾))
14 cdleme0.j . . . . . 6 = (join‘𝐾)
157, 14latjcl 18436 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
166, 10, 13, 15syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
17 cdleme0.h . . . . . 6 𝐻 = (LHyp‘𝐾)
187, 17lhpbase 39475 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1918ad2antlr 725 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝑊 ∈ (Base‘𝐾))
20 cdleme0.l . . . . . 6 = (le‘𝐾)
2120, 14, 8hlatlej1 38851 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
223, 4, 11, 21syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝑃 (𝑃 𝑄))
23 cdleme0.m . . . . 5 = (meet‘𝐾)
247, 20, 14, 23, 8atmod3i1 39341 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑃 𝑊)))
253, 4, 16, 19, 22, 24syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑃 𝑊)))
26 eqid 2727 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
2720, 14, 26, 8, 17lhpjat2 39498 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
2827adantrr 715 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑊) = (1.‘𝐾))
2928oveq2d 7440 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → ((𝑃 𝑄) (𝑃 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
30 hlol 38837 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
3130ad2antrr 724 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → 𝐾 ∈ OL)
327, 23, 26olm11 38703 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
3331, 16, 32syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
3425, 29, 333eqtrd 2771 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
352, 34eqtrid 2779 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑈) = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5150  cfv 6551  (class class class)co 7424  Basecbs 17185  lecple 17245  joincjn 18308  meetcmee 18309  1.cp1 18421  Latclat 18428  OLcol 38650  Atomscatm 38739  HLchlt 38826  LHypclh 39461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 7997  df-2nd 7998  df-proset 18292  df-poset 18310  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-oposet 38652  df-ol 38654  df-oml 38655  df-covers 38742  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827  df-psubsp 38980  df-pmap 38981  df-padd 39273  df-lhyp 39465
This theorem is referenced by:  cdleme11c  39738  cdlemg4b1  40086  cdlemg4g  40093  cdlemg13a  40128  cdlemg17a  40138  cdlemg17f  40143  cdlemg18b  40156  cdlemg18c  40157
  Copyright terms: Public domain W3C validator