Proof of Theorem cdleme0cp
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdleme0.u | . . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 2 | 1 | oveq2i 7443 | . 2
⊢ (𝑃 ∨ 𝑈) = (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) | 
| 3 |  | simpll 766 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 4 |  | simprll 778 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | 
| 5 |  | hllat 39365 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 6 | 5 | ad2antrr 726 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 7 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 8 |  | cdleme0.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 7, 8 | atbase 39291 | . . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 10 | 4, 9 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) | 
| 11 |  | simprr 772 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 12 | 7, 8 | atbase 39291 | . . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 13 | 11, 12 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) | 
| 14 |  | cdleme0.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 15 | 7, 14 | latjcl 18485 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 16 | 6, 10, 13, 15 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 17 |  | cdleme0.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 18 | 7, 17 | lhpbase 40001 | . . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 19 | 18 | ad2antlr 727 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝑊 ∈ (Base‘𝐾)) | 
| 20 |  | cdleme0.l | . . . . . 6
⊢  ≤ =
(le‘𝐾) | 
| 21 | 20, 14, 8 | hlatlej1 39377 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | 
| 22 | 3, 4, 11, 21 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | 
| 23 |  | cdleme0.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 24 | 7, 20, 14, 23, 8 | atmod3i1 39867 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑊))) | 
| 25 | 3, 4, 16, 19, 22, 24 | syl131anc 1384 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑊))) | 
| 26 |  | eqid 2736 | . . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) | 
| 27 | 20, 14, 26, 8, 17 | lhpjat2 40024 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) | 
| 28 | 27 | adantrr 717 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) | 
| 29 | 28 | oveq2d 7448 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾))) | 
| 30 |  | hlol 39363 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 31 | 30 | ad2antrr 726 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ OL) | 
| 32 | 7, 23, 26 | olm11 39229 | . . . 4
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑄)) | 
| 33 | 31, 16, 32 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑄)) | 
| 34 | 25, 29, 33 | 3eqtrd 2780 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (𝑃 ∨ 𝑄)) | 
| 35 | 2, 34 | eqtrid 2788 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |