Proof of Theorem cdlemg4a
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3 1138 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = 𝑃) | 
| 2 | 1 | oveq2d 7448 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃))) = ((𝐺‘𝑃)(join‘𝐾)𝑃)) | 
| 3 |  | simp1l 1197 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝐾 ∈ HL) | 
| 4 |  | simp1 1136 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 5 |  | simp23 1208 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝐺 ∈ 𝑇) | 
| 6 |  | simp21 1206 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 7 |  | cdlemg4.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 8 |  | cdlemg4.a | . . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 |  | cdlemg4.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | cdlemg4.t | . . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 11 | 7, 8, 9, 10 | ltrnel 40142 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) | 
| 12 | 11 | simpld 494 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝑃) ∈ 𝐴) | 
| 13 | 4, 5, 6, 12 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝐺‘𝑃) ∈ 𝐴) | 
| 14 |  | simp21l 1290 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝑃 ∈ 𝐴) | 
| 15 |  | eqid 2736 | . . . . . 6
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 16 | 15, 8 | hlatjcom 39370 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐺‘𝑃) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → ((𝐺‘𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)(𝐺‘𝑃))) | 
| 17 | 3, 13, 14, 16 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)(𝐺‘𝑃))) | 
| 18 | 2, 17 | eqtrd 2776 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃))) = (𝑃(join‘𝐾)(𝐺‘𝑃))) | 
| 19 | 18 | oveq1d 7447 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃)))(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)(𝐺‘𝑃))(meet‘𝐾)𝑊)) | 
| 20 |  | simp22 1207 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝐹 ∈ 𝑇) | 
| 21 | 4, 5, 6, 11 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) | 
| 22 |  | eqid 2736 | . . . 4
⊢
(meet‘𝐾) =
(meet‘𝐾) | 
| 23 |  | cdlemg4.r | . . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 24 | 7, 15, 22, 8, 9, 10, 23 | trlval2 40166 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → (𝑅‘𝐹) = (((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃)))(meet‘𝐾)𝑊)) | 
| 25 | 4, 20, 21, 24 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐹) = (((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃)))(meet‘𝐾)𝑊)) | 
| 26 | 7, 15, 22, 8, 9, 10, 23 | trlval2 40166 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃(join‘𝐾)(𝐺‘𝑃))(meet‘𝐾)𝑊)) | 
| 27 | 4, 5, 6, 26 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐺) = ((𝑃(join‘𝐾)(𝐺‘𝑃))(meet‘𝐾)𝑊)) | 
| 28 | 19, 25, 27 | 3eqtr4d 2786 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐹) = (𝑅‘𝐺)) |