Proof of Theorem cdlemg4a
Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = 𝑃) |
2 | 1 | oveq2d 7291 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃))) = ((𝐺‘𝑃)(join‘𝐾)𝑃)) |
3 | | simp1l 1196 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝐾 ∈ HL) |
4 | | simp1 1135 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
5 | | simp23 1207 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝐺 ∈ 𝑇) |
6 | | simp21 1205 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
7 | | cdlemg4.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemg4.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdlemg4.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdlemg4.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
11 | 7, 8, 9, 10 | ltrnel 38153 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
12 | 11 | simpld 495 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝑃) ∈ 𝐴) |
13 | 4, 5, 6, 12 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝐺‘𝑃) ∈ 𝐴) |
14 | | simp21l 1289 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝑃 ∈ 𝐴) |
15 | | eqid 2738 |
. . . . . 6
⊢
(join‘𝐾) =
(join‘𝐾) |
16 | 15, 8 | hlatjcom 37382 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐺‘𝑃) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → ((𝐺‘𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)(𝐺‘𝑃))) |
17 | 3, 13, 14, 16 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)(𝐺‘𝑃))) |
18 | 2, 17 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃))) = (𝑃(join‘𝐾)(𝐺‘𝑃))) |
19 | 18 | oveq1d 7290 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃)))(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)(𝐺‘𝑃))(meet‘𝐾)𝑊)) |
20 | | simp22 1206 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → 𝐹 ∈ 𝑇) |
21 | 4, 5, 6, 11 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
22 | | eqid 2738 |
. . . 4
⊢
(meet‘𝐾) =
(meet‘𝐾) |
23 | | cdlemg4.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
24 | 7, 15, 22, 8, 9, 10, 23 | trlval2 38177 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → (𝑅‘𝐹) = (((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃)))(meet‘𝐾)𝑊)) |
25 | 4, 20, 21, 24 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐹) = (((𝐺‘𝑃)(join‘𝐾)(𝐹‘(𝐺‘𝑃)))(meet‘𝐾)𝑊)) |
26 | 7, 15, 22, 8, 9, 10, 23 | trlval2 38177 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃(join‘𝐾)(𝐺‘𝑃))(meet‘𝐾)𝑊)) |
27 | 4, 5, 6, 26 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐺) = ((𝑃(join‘𝐾)(𝐺‘𝑃))(meet‘𝐾)𝑊)) |
28 | 19, 25, 27 | 3eqtr4d 2788 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐹) = (𝑅‘𝐺)) |