Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4a Structured version   Visualization version   GIF version

Theorem cdlemg4a 39468
Description: TODO: FIX COMMENT If fg(p) = p, then tr f = tr g. (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg4a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝑅𝐹) = (𝑅𝐺))

Proof of Theorem cdlemg4a
StepHypRef Expression
1 simp3 1139 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝐹‘(𝐺𝑃)) = 𝑃)
21oveq2d 7422 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → ((𝐺𝑃)(join‘𝐾)(𝐹‘(𝐺𝑃))) = ((𝐺𝑃)(join‘𝐾)𝑃))
3 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → 𝐾 ∈ HL)
4 simp1 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → 𝐺𝑇)
6 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
7 cdlemg4.l . . . . . . . 8 = (le‘𝐾)
8 cdlemg4.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
9 cdlemg4.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
10 cdlemg4.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnel 38999 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
1211simpld 496 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
134, 5, 6, 12syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝐺𝑃) ∈ 𝐴)
14 simp21l 1291 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → 𝑃𝐴)
15 eqid 2733 . . . . . 6 (join‘𝐾) = (join‘𝐾)
1615, 8hlatjcom 38227 . . . . 5 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴𝑃𝐴) → ((𝐺𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)(𝐺𝑃)))
173, 13, 14, 16syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → ((𝐺𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)(𝐺𝑃)))
182, 17eqtrd 2773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → ((𝐺𝑃)(join‘𝐾)(𝐹‘(𝐺𝑃))) = (𝑃(join‘𝐾)(𝐺𝑃)))
1918oveq1d 7421 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (((𝐺𝑃)(join‘𝐾)(𝐹‘(𝐺𝑃)))(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)(𝐺𝑃))(meet‘𝐾)𝑊))
20 simp22 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → 𝐹𝑇)
214, 5, 6, 11syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
22 eqid 2733 . . . 4 (meet‘𝐾) = (meet‘𝐾)
23 cdlemg4.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
247, 15, 22, 8, 9, 10, 23trlval2 39023 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑅𝐹) = (((𝐺𝑃)(join‘𝐾)(𝐹‘(𝐺𝑃)))(meet‘𝐾)𝑊))
254, 20, 21, 24syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝑅𝐹) = (((𝐺𝑃)(join‘𝐾)(𝐹‘(𝐺𝑃)))(meet‘𝐾)𝑊))
267, 15, 22, 8, 9, 10, 23trlval2 39023 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃(join‘𝐾)(𝐺𝑃))(meet‘𝐾)𝑊))
274, 5, 6, 26syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝑅𝐺) = ((𝑃(join‘𝐾)(𝐺𝑃))(meet‘𝐾)𝑊))
2819, 25, 273eqtr4d 2783 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹‘(𝐺𝑃)) = 𝑃) → (𝑅𝐹) = (𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5148  cfv 6541  (class class class)co 7406  lecple 17201  joincjn 18261  meetcmee 18262  Atomscatm 38122  HLchlt 38209  LHypclh 38844  LTrncltrn 38961  trLctrl 39018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-proset 18245  df-poset 18263  df-plt 18280  df-lub 18296  df-glb 18297  df-join 18298  df-meet 18299  df-p0 18375  df-lat 18382  df-oposet 38035  df-ol 38037  df-oml 38038  df-covers 38125  df-ats 38126  df-atl 38157  df-cvlat 38181  df-hlat 38210  df-lhyp 38848  df-laut 38849  df-ldil 38964  df-ltrn 38965  df-trl 39019
This theorem is referenced by:  cdlemg4f  39475
  Copyright terms: Public domain W3C validator