MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphtiOLD Structured version   Visualization version   GIF version

Theorem reparphtiOLD 24873
Description: Obsolete version of reparphti 24872 as of 9-Apr-2025. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
reparpht.1 (𝜑𝐹 ∈ (II Cn 𝐽))
reparpht.2 (𝜑𝐺 ∈ (II Cn II))
reparpht.3 (𝜑 → (𝐺‘0) = 0)
reparpht.4 (𝜑 → (𝐺‘1) = 1)
reparphtiOLD.5 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
Assertion
Ref Expression
reparphtiOLD (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)

Proof of Theorem reparphtiOLD
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.2 . . 3 (𝜑𝐺 ∈ (II Cn II))
2 reparpht.1 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
3 cnco 23129 . . 3 ((𝐺 ∈ (II Cn II) ∧ 𝐹 ∈ (II Cn 𝐽)) → (𝐹𝐺) ∈ (II Cn 𝐽))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹𝐺) ∈ (II Cn 𝐽))
5 reparphtiOLD.5 . . 3 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
6 iitopon 24748 . . . . 5 II ∈ (TopOn‘(0[,]1))
76a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
8 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
98cnfldtop 24647 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
10 cnrest2r 23150 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
127, 7cnmpt2nd 23532 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn II))
13 iirevcn 24800 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
15 oveq2 7377 . . . . . . . . . . 11 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
167, 7, 12, 7, 14, 15cnmpt21 23534 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn II))
178dfii3 24752 . . . . . . . . . . 11 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
1817oveq2i 7380 . . . . . . . . . 10 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
1916, 18eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2011, 19sseldd 3944 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
217, 7cnmpt1st 23531 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn II))
227, 7, 21, 1cnmpt21f 23535 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn II))
2322, 18eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2411, 23sseldd 3944 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
258mulcn 24732 . . . . . . . . 9 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2625a1i 11 . . . . . . . 8 (𝜑 → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
277, 7, 20, 24, 26cnmpt22f 23538 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((1 − 𝑦) · (𝐺𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
2812, 18eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2911, 28sseldd 3944 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
3021, 18eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
3111, 30sseldd 3944 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
327, 7, 29, 31, 26cnmpt22f 23538 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑦 · 𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
338addcn 24730 . . . . . . . 8 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3433a1i 11 . . . . . . 7 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
357, 7, 27, 32, 34cnmpt22f 23538 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
368cnfldtopon 24646 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
38 iiuni 24750 . . . . . . . . . . . . . . 15 (0[,]1) = II
3938, 38cnf 23109 . . . . . . . . . . . . . 14 (𝐺 ∈ (II Cn II) → 𝐺:(0[,]1)⟶(0[,]1))
401, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝐺:(0[,]1)⟶(0[,]1))
4140ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ (0[,]1))
4241adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐺𝑥) ∈ (0[,]1))
43 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 ∈ (0[,]1))
44 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑦 ∈ (0[,]1))
45 0re 11152 . . . . . . . . . . . 12 0 ∈ ℝ
46 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
47 icccvx 24824 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1)))
4845, 46, 47mp2an 692 . . . . . . . . . . 11 (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
4942, 43, 44, 48syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5049ralrimivva 3178 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
51 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))
5251fmpo 8026 . . . . . . . . 9 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5350, 52sylib 218 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5453frnd 6678 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
55 unitssre 13436 . . . . . . . . 9 (0[,]1) ⊆ ℝ
56 ax-resscn 11101 . . . . . . . . 9 ℝ ⊆ ℂ
5755, 56sstri 3953 . . . . . . . 8 (0[,]1) ⊆ ℂ
5857a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
59 cnrest2 23149 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6037, 54, 58, 59syl3anc 1373 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6135, 60mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
6261, 18eleqtrrdi 2839 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn II))
637, 7, 62, 2cnmpt21f 23535 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))) ∈ ((II ×t II) Cn 𝐽))
645, 63eqeltrid 2832 . 2 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
6540ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ (0[,]1))
6657, 65sselid 3941 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ ℂ)
6766mullidd 11168 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · (𝐺𝑠)) = (𝐺𝑠))
6857sseli 3939 . . . . . . . 8 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℂ)
6968adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
7069mul02d 11348 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · 𝑠) = 0)
7167, 70oveq12d 7387 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = ((𝐺𝑠) + 0))
7266addridd 11350 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐺𝑠) + 0) = (𝐺𝑠))
7371, 72eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = (𝐺𝑠))
7473fveq2d 6844 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) = (𝐹‘(𝐺𝑠)))
75 simpr 484 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
76 0elunit 13406 . . . 4 0 ∈ (0[,]1)
77 simpr 484 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
7877oveq2d 7385 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = (1 − 0))
79 1m0e1 12278 . . . . . . . . 9 (1 − 0) = 1
8078, 79eqtrdi 2780 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = 1)
81 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8281fveq2d 6844 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝐺𝑥) = (𝐺𝑠))
8380, 82oveq12d 7387 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((1 − 𝑦) · (𝐺𝑥)) = (1 · (𝐺𝑠)))
8477, 81oveq12d 7387 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (𝑦 · 𝑥) = (0 · 𝑠))
8583, 84oveq12d 7387 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((1 · (𝐺𝑠)) + (0 · 𝑠)))
8685fveq2d 6844 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
87 fvex 6853 . . . . 5 (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) ∈ V
8886, 5, 87ovmpoa 7524 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
8975, 76, 88sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
90 fvco3 6942 . . . 4 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9140, 90sylan 580 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9274, 89, 913eqtr4d 2774 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = ((𝐹𝐺)‘𝑠))
93 1elunit 13407 . . . 4 1 ∈ (0[,]1)
94 simpr 484 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
9594oveq2d 7385 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = (1 − 1))
96 1m1e0 12234 . . . . . . . . 9 (1 − 1) = 0
9795, 96eqtrdi 2780 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = 0)
98 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
9998fveq2d 6844 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝐺𝑥) = (𝐺𝑠))
10097, 99oveq12d 7387 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((1 − 𝑦) · (𝐺𝑥)) = (0 · (𝐺𝑠)))
10194, 98oveq12d 7387 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 · 𝑥) = (1 · 𝑠))
102100, 101oveq12d 7387 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((0 · (𝐺𝑠)) + (1 · 𝑠)))
103102fveq2d 6844 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
104 fvex 6853 . . . . 5 (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) ∈ V
105103, 5, 104ovmpoa 7524 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10675, 93, 105sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10766mul02d 11348 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · (𝐺𝑠)) = 0)
10869mullidd 11168 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · 𝑠) = 𝑠)
109107, 108oveq12d 7387 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = (0 + 𝑠))
11069addlidd 11351 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (0 + 𝑠) = 𝑠)
111109, 110eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = 𝑠)
112111fveq2d 6844 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) = (𝐹𝑠))
113106, 112eqtrd 2764 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹𝑠))
114 reparpht.3 . . . . . . . . 9 (𝜑 → (𝐺‘0) = 0)
115114adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘0) = 0)
116115oveq2d 7385 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = ((1 − 𝑠) · 0))
117 ax-1cn 11102 . . . . . . . . 9 1 ∈ ℂ
118 subcl 11396 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
119117, 69, 118sylancr 587 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
120119mul01d 11349 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 0) = 0)
121116, 120eqtrd 2764 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = 0)
12269mul01d 11349 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 0) = 0)
123121, 122oveq12d 7387 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = (0 + 0))
124 00id 11325 . . . . 5 (0 + 0) = 0
125123, 124eqtrdi 2780 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = 0)
126125fveq2d 6844 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) = (𝐹‘0))
127 simpr 484 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
128127oveq2d 7385 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
129 simpl 482 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
130129fveq2d 6844 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘0))
131128, 130oveq12d 7387 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘0)))
132127, 129oveq12d 7387 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 0))
133131, 132oveq12d 7387 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)))
134133fveq2d 6844 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
135 fvex 6853 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) ∈ V
136134, 5, 135ovmpoa 7524 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
13776, 75, 136sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
138 fvco3 6942 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
13940, 76, 138sylancl 586 . . . . 5 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
140114fveq2d 6844 . . . . 5 (𝜑 → (𝐹‘(𝐺‘0)) = (𝐹‘0))
141139, 140eqtrd 2764 . . . 4 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘0))
142141adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘0))
143126, 137, 1423eqtr4d 2774 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = ((𝐹𝐺)‘0))
144 reparpht.4 . . . . . . . . 9 (𝜑 → (𝐺‘1) = 1)
145144adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = 1)
146145oveq2d 7385 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = ((1 − 𝑠) · 1))
147119mulridd 11167 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 1) = (1 − 𝑠))
148146, 147eqtrd 2764 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = (1 − 𝑠))
14969mulridd 11167 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 1) = 𝑠)
150148, 149oveq12d 7387 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = ((1 − 𝑠) + 𝑠))
151 npcan 11406 . . . . . 6 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((1 − 𝑠) + 𝑠) = 1)
152117, 69, 151sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) + 𝑠) = 1)
153150, 152eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = 1)
154153fveq2d 6844 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) = (𝐹‘1))
155 simpr 484 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
156155oveq2d 7385 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
157 simpl 482 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
158157fveq2d 6844 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘1))
159156, 158oveq12d 7387 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘1)))
160155, 157oveq12d 7387 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 1))
161159, 160oveq12d 7387 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)))
162161fveq2d 6844 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
163 fvex 6853 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) ∈ V
164162, 5, 163ovmpoa 7524 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
16593, 75, 164sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
166 fvco3 6942 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 1 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
16740, 93, 166sylancl 586 . . . . 5 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
168144fveq2d 6844 . . . . 5 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹‘1))
169167, 168eqtrd 2764 . . . 4 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘1))
170169adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘1))
171154, 165, 1703eqtr4d 2774 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = ((𝐹𝐺)‘1))
1724, 2, 64, 92, 113, 143, 171isphtpy2d 24862 1 (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911  cmpt 5183   × cxp 5629  ran crn 5632  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  [,]cicc 13285  t crest 17359  TopOpenctopn 17360  fldccnfld 21240  Topctop 22756  TopOnctopon 22773   Cn ccn 23087   ×t ctx 23423  IIcii 24744  PHtpycphtpy 24843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-xms 24184  df-ms 24185  df-tms 24186  df-ii 24746  df-htpy 24845  df-phtpy 24846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator