| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutneg | Structured version Visualization version GIF version | ||
| Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| cutneg.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| cutneg.2 | ⊢ (𝜑 → 𝐴 <s 0s ) |
| Ref | Expression |
|---|---|
| cutneg | ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutneg.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | 0sno 27790 | . . . 4 ⊢ 0s ∈ No | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0s ∈ No ) |
| 4 | cutneg.2 | . . 3 ⊢ (𝜑 → 𝐴 <s 0s ) | |
| 5 | 1, 3, 4 | ssltsn 27756 | . 2 ⊢ (𝜑 → {𝐴} <<s { 0s }) |
| 6 | snelpwi 5418 | . . . 4 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ { 0s } ∈ 𝒫 No |
| 8 | nulssgt 27762 | . . 3 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ (𝜑 → { 0s } <<s ∅) |
| 10 | 5, 9 | cuteq0 27796 | 1 ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4308 𝒫 cpw 4575 {csn 4601 class class class wbr 5119 (class class class)co 7405 No csur 27603 <s cslt 27604 <<s csslt 27744 |s cscut 27746 0s c0s 27786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-0s 27788 |
| This theorem is referenced by: n0scut 28278 |
| Copyright terms: Public domain | W3C validator |