| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutneg | Structured version Visualization version GIF version | ||
| Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| cutneg.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| cutneg.2 | ⊢ (𝜑 → 𝐴 <s 0s ) |
| Ref | Expression |
|---|---|
| cutneg | ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutneg.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | 0sno 27776 | . . . 4 ⊢ 0s ∈ No | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0s ∈ No ) |
| 4 | cutneg.2 | . . 3 ⊢ (𝜑 → 𝐴 <s 0s ) | |
| 5 | 1, 3, 4 | ssltsn 27739 | . 2 ⊢ (𝜑 → {𝐴} <<s { 0s }) |
| 6 | snelpwi 5387 | . . . 4 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ { 0s } ∈ 𝒫 No |
| 8 | nulssgt 27745 | . . 3 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ (𝜑 → { 0s } <<s ∅) |
| 10 | 5, 9 | cuteq0 27782 | 1 ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4282 𝒫 cpw 4549 {csn 4575 class class class wbr 5093 (class class class)co 7352 No csur 27584 <s cslt 27585 <<s csslt 27726 |s cscut 27728 0s c0s 27772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1o 8391 df-2o 8392 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-0s 27774 |
| This theorem is referenced by: n0scut 28268 |
| Copyright terms: Public domain | W3C validator |