| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutneg | Structured version Visualization version GIF version | ||
| Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| cutneg.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| cutneg.2 | ⊢ (𝜑 → 𝐴 <s 0s ) |
| Ref | Expression |
|---|---|
| cutneg | ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutneg.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | 0sno 27745 | . . . 4 ⊢ 0s ∈ No | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0s ∈ No ) |
| 4 | cutneg.2 | . . 3 ⊢ (𝜑 → 𝐴 <s 0s ) | |
| 5 | 1, 3, 4 | ssltsn 27711 | . 2 ⊢ (𝜑 → {𝐴} <<s { 0s }) |
| 6 | snelpwi 5406 | . . . 4 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ { 0s } ∈ 𝒫 No |
| 8 | nulssgt 27717 | . . 3 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ (𝜑 → { 0s } <<s ∅) |
| 10 | 5, 9 | cuteq0 27751 | 1 ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 (class class class)co 7390 No csur 27558 <s cslt 27559 <<s csslt 27699 |s cscut 27701 0s c0s 27741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 |
| This theorem is referenced by: n0scut 28233 |
| Copyright terms: Public domain | W3C validator |