Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmrecnq | Structured version Visualization version GIF version |
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmrecnq | ⊢ dom *Q = Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rq 10661 | . . . . . 6 ⊢ *Q = (◡ ·Q “ {1Q}) | |
2 | cnvimass 5983 | . . . . . 6 ⊢ (◡ ·Q “ {1Q}) ⊆ dom ·Q | |
3 | 1, 2 | eqsstri 3955 | . . . . 5 ⊢ *Q ⊆ dom ·Q |
4 | mulnqf 10693 | . . . . . 6 ⊢ ·Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6605 | . . . . 5 ⊢ dom ·Q = (Q × Q) |
6 | 3, 5 | sseqtri 3957 | . . . 4 ⊢ *Q ⊆ (Q × Q) |
7 | dmss 5805 | . . . 4 ⊢ (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom *Q ⊆ dom (Q × Q) |
9 | dmxpid 5833 | . . 3 ⊢ dom (Q × Q) = Q | |
10 | 8, 9 | sseqtri 3957 | . 2 ⊢ dom *Q ⊆ Q |
11 | recclnq 10710 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
12 | opelxpi 5622 | . . . . . . . 8 ⊢ ((𝑥 ∈ Q ∧ (*Q‘𝑥) ∈ Q) → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) | |
13 | 11, 12 | mpdan 684 | . . . . . . 7 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) |
14 | df-ov 7271 | . . . . . . . 8 ⊢ (𝑥 ·Q (*Q‘𝑥)) = ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) | |
15 | recidnq 10709 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
16 | 14, 15 | eqtr3id 2792 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q) |
17 | ffn 6593 | . . . . . . . 8 ⊢ ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q)) | |
18 | fniniseg 6930 | . . . . . . . 8 ⊢ ( ·Q Fn (Q × Q) → (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q))) | |
19 | 4, 17, 18 | mp2b 10 | . . . . . . 7 ⊢ (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q)) |
20 | 13, 16, 19 | sylanbrc 583 | . . . . . 6 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q})) |
21 | 20, 1 | eleqtrrdi 2850 | . . . . 5 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) |
22 | df-br 5075 | . . . . 5 ⊢ (𝑥*Q(*Q‘𝑥) ↔ 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) | |
23 | 21, 22 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ Q → 𝑥*Q(*Q‘𝑥)) |
24 | vex 3434 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | fvex 6780 | . . . . 5 ⊢ (*Q‘𝑥) ∈ V | |
26 | 24, 25 | breldm 5811 | . . . 4 ⊢ (𝑥*Q(*Q‘𝑥) → 𝑥 ∈ dom *Q) |
27 | 23, 26 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → 𝑥 ∈ dom *Q) |
28 | 27 | ssriv 3925 | . 2 ⊢ Q ⊆ dom *Q |
29 | 10, 28 | eqssi 3937 | 1 ⊢ dom *Q = Q |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4562 〈cop 4568 class class class wbr 5074 × cxp 5583 ◡ccnv 5584 dom cdm 5585 “ cima 5588 Fn wfn 6422 ⟶wf 6423 ‘cfv 6427 (class class class)co 7268 Qcnq 10596 1Qc1q 10597 ·Q cmq 10600 *Qcrq 10601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-oadd 8289 df-omul 8290 df-er 8486 df-ni 10616 df-mi 10618 df-lti 10619 df-mpq 10653 df-enq 10655 df-nq 10656 df-erq 10657 df-mq 10659 df-1nq 10660 df-rq 10661 |
This theorem is referenced by: ltrnq 10723 reclem2pr 10792 |
Copyright terms: Public domain | W3C validator |