| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmrecnq | Structured version Visualization version GIF version | ||
| Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmrecnq | ⊢ dom *Q = Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rq 10877 | . . . . . 6 ⊢ *Q = (◡ ·Q “ {1Q}) | |
| 2 | cnvimass 6056 | . . . . . 6 ⊢ (◡ ·Q “ {1Q}) ⊆ dom ·Q | |
| 3 | 1, 2 | eqsstri 3996 | . . . . 5 ⊢ *Q ⊆ dom ·Q |
| 4 | mulnqf 10909 | . . . . . 6 ⊢ ·Q :(Q × Q)⟶Q | |
| 5 | 4 | fdmi 6702 | . . . . 5 ⊢ dom ·Q = (Q × Q) |
| 6 | 3, 5 | sseqtri 3998 | . . . 4 ⊢ *Q ⊆ (Q × Q) |
| 7 | dmss 5869 | . . . 4 ⊢ (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom *Q ⊆ dom (Q × Q) |
| 9 | dmxpid 5897 | . . 3 ⊢ dom (Q × Q) = Q | |
| 10 | 8, 9 | sseqtri 3998 | . 2 ⊢ dom *Q ⊆ Q |
| 11 | recclnq 10926 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
| 12 | opelxpi 5678 | . . . . . . . 8 ⊢ ((𝑥 ∈ Q ∧ (*Q‘𝑥) ∈ Q) → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) | |
| 13 | 11, 12 | mpdan 687 | . . . . . . 7 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) |
| 14 | df-ov 7393 | . . . . . . . 8 ⊢ (𝑥 ·Q (*Q‘𝑥)) = ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) | |
| 15 | recidnq 10925 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
| 16 | 14, 15 | eqtr3id 2779 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q) |
| 17 | ffn 6691 | . . . . . . . 8 ⊢ ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q)) | |
| 18 | fniniseg 7035 | . . . . . . . 8 ⊢ ( ·Q Fn (Q × Q) → (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q))) | |
| 19 | 4, 17, 18 | mp2b 10 | . . . . . . 7 ⊢ (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q)) |
| 20 | 13, 16, 19 | sylanbrc 583 | . . . . . 6 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q})) |
| 21 | 20, 1 | eleqtrrdi 2840 | . . . . 5 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) |
| 22 | df-br 5111 | . . . . 5 ⊢ (𝑥*Q(*Q‘𝑥) ↔ 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) | |
| 23 | 21, 22 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ Q → 𝑥*Q(*Q‘𝑥)) |
| 24 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 25 | fvex 6874 | . . . . 5 ⊢ (*Q‘𝑥) ∈ V | |
| 26 | 24, 25 | breldm 5875 | . . . 4 ⊢ (𝑥*Q(*Q‘𝑥) → 𝑥 ∈ dom *Q) |
| 27 | 23, 26 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → 𝑥 ∈ dom *Q) |
| 28 | 27 | ssriv 3953 | . 2 ⊢ Q ⊆ dom *Q |
| 29 | 10, 28 | eqssi 3966 | 1 ⊢ dom *Q = Q |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Qcnq 10812 1Qc1q 10813 ·Q cmq 10816 *Qcrq 10817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-mi 10834 df-lti 10835 df-mpq 10869 df-enq 10871 df-nq 10872 df-erq 10873 df-mq 10875 df-1nq 10876 df-rq 10877 |
| This theorem is referenced by: ltrnq 10939 reclem2pr 11008 |
| Copyright terms: Public domain | W3C validator |