![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmrecnq | Structured version Visualization version GIF version |
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmrecnq | ⊢ dom *Q = Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rq 10918 | . . . . . 6 ⊢ *Q = (◡ ·Q “ {1Q}) | |
2 | cnvimass 6080 | . . . . . 6 ⊢ (◡ ·Q “ {1Q}) ⊆ dom ·Q | |
3 | 1, 2 | eqsstri 4016 | . . . . 5 ⊢ *Q ⊆ dom ·Q |
4 | mulnqf 10950 | . . . . . 6 ⊢ ·Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6729 | . . . . 5 ⊢ dom ·Q = (Q × Q) |
6 | 3, 5 | sseqtri 4018 | . . . 4 ⊢ *Q ⊆ (Q × Q) |
7 | dmss 5902 | . . . 4 ⊢ (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom *Q ⊆ dom (Q × Q) |
9 | dmxpid 5929 | . . 3 ⊢ dom (Q × Q) = Q | |
10 | 8, 9 | sseqtri 4018 | . 2 ⊢ dom *Q ⊆ Q |
11 | recclnq 10967 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
12 | opelxpi 5713 | . . . . . . . 8 ⊢ ((𝑥 ∈ Q ∧ (*Q‘𝑥) ∈ Q) → ⟨𝑥, (*Q‘𝑥)⟩ ∈ (Q × Q)) | |
13 | 11, 12 | mpdan 684 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ⟨𝑥, (*Q‘𝑥)⟩ ∈ (Q × Q)) |
14 | df-ov 7415 | . . . . . . . 8 ⊢ (𝑥 ·Q (*Q‘𝑥)) = ( ·Q ‘⟨𝑥, (*Q‘𝑥)⟩) | |
15 | recidnq 10966 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
16 | 14, 15 | eqtr3id 2785 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ( ·Q ‘⟨𝑥, (*Q‘𝑥)⟩) = 1Q) |
17 | ffn 6717 | . . . . . . . 8 ⊢ ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q)) | |
18 | fniniseg 7061 | . . . . . . . 8 ⊢ ( ·Q Fn (Q × Q) → (⟨𝑥, (*Q‘𝑥)⟩ ∈ (◡ ·Q “ {1Q}) ↔ (⟨𝑥, (*Q‘𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q‘𝑥)⟩) = 1Q))) | |
19 | 4, 17, 18 | mp2b 10 | . . . . . . 7 ⊢ (⟨𝑥, (*Q‘𝑥)⟩ ∈ (◡ ·Q “ {1Q}) ↔ (⟨𝑥, (*Q‘𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q‘𝑥)⟩) = 1Q)) |
20 | 13, 16, 19 | sylanbrc 582 | . . . . . 6 ⊢ (𝑥 ∈ Q → ⟨𝑥, (*Q‘𝑥)⟩ ∈ (◡ ·Q “ {1Q})) |
21 | 20, 1 | eleqtrrdi 2843 | . . . . 5 ⊢ (𝑥 ∈ Q → ⟨𝑥, (*Q‘𝑥)⟩ ∈ *Q) |
22 | df-br 5149 | . . . . 5 ⊢ (𝑥*Q(*Q‘𝑥) ↔ ⟨𝑥, (*Q‘𝑥)⟩ ∈ *Q) | |
23 | 21, 22 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ Q → 𝑥*Q(*Q‘𝑥)) |
24 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | fvex 6904 | . . . . 5 ⊢ (*Q‘𝑥) ∈ V | |
26 | 24, 25 | breldm 5908 | . . . 4 ⊢ (𝑥*Q(*Q‘𝑥) → 𝑥 ∈ dom *Q) |
27 | 23, 26 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → 𝑥 ∈ dom *Q) |
28 | 27 | ssriv 3986 | . 2 ⊢ Q ⊆ dom *Q |
29 | 10, 28 | eqssi 3998 | 1 ⊢ dom *Q = Q |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 {csn 4628 ⟨cop 4634 class class class wbr 5148 × cxp 5674 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 Qcnq 10853 1Qc1q 10854 ·Q cmq 10857 *Qcrq 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-omul 8477 df-er 8709 df-ni 10873 df-mi 10875 df-lti 10876 df-mpq 10910 df-enq 10912 df-nq 10913 df-erq 10914 df-mq 10916 df-1nq 10917 df-rq 10918 |
This theorem is referenced by: ltrnq 10980 reclem2pr 11049 |
Copyright terms: Public domain | W3C validator |