MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrecnq Structured version   Visualization version   GIF version

Theorem dmrecnq 10390
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
dmrecnq dom *Q = Q

Proof of Theorem dmrecnq
StepHypRef Expression
1 df-rq 10339 . . . . . 6 *Q = ( ·Q “ {1Q})
2 cnvimass 5949 . . . . . 6 ( ·Q “ {1Q}) ⊆ dom ·Q
31, 2eqsstri 4001 . . . . 5 *Q ⊆ dom ·Q
4 mulnqf 10371 . . . . . 6 ·Q :(Q × Q)⟶Q
54fdmi 6524 . . . . 5 dom ·Q = (Q × Q)
63, 5sseqtri 4003 . . . 4 *Q ⊆ (Q × Q)
7 dmss 5771 . . . 4 (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q))
86, 7ax-mp 5 . . 3 dom *Q ⊆ dom (Q × Q)
9 dmxpid 5800 . . 3 dom (Q × Q) = Q
108, 9sseqtri 4003 . 2 dom *QQ
11 recclnq 10388 . . . . . . . 8 (𝑥Q → (*Q𝑥) ∈ Q)
12 opelxpi 5592 . . . . . . . 8 ((𝑥Q ∧ (*Q𝑥) ∈ Q) → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
1311, 12mpdan 685 . . . . . . 7 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
14 df-ov 7159 . . . . . . . 8 (𝑥 ·Q (*Q𝑥)) = ( ·Q ‘⟨𝑥, (*Q𝑥)⟩)
15 recidnq 10387 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1614, 15syl5eqr 2870 . . . . . . 7 (𝑥Q → ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)
17 ffn 6514 . . . . . . . 8 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
18 fniniseg 6830 . . . . . . . 8 ( ·Q Fn (Q × Q) → (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)))
194, 17, 18mp2b 10 . . . . . . 7 (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q))
2013, 16, 19sylanbrc 585 . . . . . 6 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}))
2120, 1eleqtrrdi 2924 . . . . 5 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
22 df-br 5067 . . . . 5 (𝑥*Q(*Q𝑥) ↔ ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
2321, 22sylibr 236 . . . 4 (𝑥Q𝑥*Q(*Q𝑥))
24 vex 3497 . . . . 5 𝑥 ∈ V
25 fvex 6683 . . . . 5 (*Q𝑥) ∈ V
2624, 25breldm 5777 . . . 4 (𝑥*Q(*Q𝑥) → 𝑥 ∈ dom *Q)
2723, 26syl 17 . . 3 (𝑥Q𝑥 ∈ dom *Q)
2827ssriv 3971 . 2 Q ⊆ dom *Q
2910, 28eqssi 3983 1 dom *Q = Q
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936  {csn 4567  cop 4573   class class class wbr 5066   × cxp 5553  ccnv 5554  dom cdm 5555  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Qcnq 10274  1Qc1q 10275   ·Q cmq 10278  *Qcrq 10279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ni 10294  df-mi 10296  df-lti 10297  df-mpq 10331  df-enq 10333  df-nq 10334  df-erq 10335  df-mq 10337  df-1nq 10338  df-rq 10339
This theorem is referenced by:  ltrnq  10401  reclem2pr  10470
  Copyright terms: Public domain W3C validator