MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrecnq Structured version   Visualization version   GIF version

Theorem dmrecnq 10928
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
dmrecnq dom *Q = Q

Proof of Theorem dmrecnq
StepHypRef Expression
1 df-rq 10877 . . . . . 6 *Q = ( ·Q “ {1Q})
2 cnvimass 6056 . . . . . 6 ( ·Q “ {1Q}) ⊆ dom ·Q
31, 2eqsstri 3996 . . . . 5 *Q ⊆ dom ·Q
4 mulnqf 10909 . . . . . 6 ·Q :(Q × Q)⟶Q
54fdmi 6702 . . . . 5 dom ·Q = (Q × Q)
63, 5sseqtri 3998 . . . 4 *Q ⊆ (Q × Q)
7 dmss 5869 . . . 4 (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q))
86, 7ax-mp 5 . . 3 dom *Q ⊆ dom (Q × Q)
9 dmxpid 5897 . . 3 dom (Q × Q) = Q
108, 9sseqtri 3998 . 2 dom *QQ
11 recclnq 10926 . . . . . . . 8 (𝑥Q → (*Q𝑥) ∈ Q)
12 opelxpi 5678 . . . . . . . 8 ((𝑥Q ∧ (*Q𝑥) ∈ Q) → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
1311, 12mpdan 687 . . . . . . 7 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
14 df-ov 7393 . . . . . . . 8 (𝑥 ·Q (*Q𝑥)) = ( ·Q ‘⟨𝑥, (*Q𝑥)⟩)
15 recidnq 10925 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1614, 15eqtr3id 2779 . . . . . . 7 (𝑥Q → ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)
17 ffn 6691 . . . . . . . 8 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
18 fniniseg 7035 . . . . . . . 8 ( ·Q Fn (Q × Q) → (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)))
194, 17, 18mp2b 10 . . . . . . 7 (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q))
2013, 16, 19sylanbrc 583 . . . . . 6 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}))
2120, 1eleqtrrdi 2840 . . . . 5 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
22 df-br 5111 . . . . 5 (𝑥*Q(*Q𝑥) ↔ ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
2321, 22sylibr 234 . . . 4 (𝑥Q𝑥*Q(*Q𝑥))
24 vex 3454 . . . . 5 𝑥 ∈ V
25 fvex 6874 . . . . 5 (*Q𝑥) ∈ V
2624, 25breldm 5875 . . . 4 (𝑥*Q(*Q𝑥) → 𝑥 ∈ dom *Q)
2723, 26syl 17 . . 3 (𝑥Q𝑥 ∈ dom *Q)
2827ssriv 3953 . 2 Q ⊆ dom *Q
2910, 28eqssi 3966 1 dom *Q = Q
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Qcnq 10812  1Qc1q 10813   ·Q cmq 10816  *Qcrq 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ni 10832  df-mi 10834  df-lti 10835  df-mpq 10869  df-enq 10871  df-nq 10872  df-erq 10873  df-mq 10875  df-1nq 10876  df-rq 10877
This theorem is referenced by:  ltrnq  10939  reclem2pr  11008
  Copyright terms: Public domain W3C validator