MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrecnq Structured version   Visualization version   GIF version

Theorem dmrecnq 10869
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
dmrecnq dom *Q = Q

Proof of Theorem dmrecnq
StepHypRef Expression
1 df-rq 10818 . . . . . 6 *Q = ( ·Q “ {1Q})
2 cnvimass 6038 . . . . . 6 ( ·Q “ {1Q}) ⊆ dom ·Q
31, 2eqsstri 3978 . . . . 5 *Q ⊆ dom ·Q
4 mulnqf 10850 . . . . . 6 ·Q :(Q × Q)⟶Q
54fdmi 6670 . . . . 5 dom ·Q = (Q × Q)
63, 5sseqtri 3980 . . . 4 *Q ⊆ (Q × Q)
7 dmss 5849 . . . 4 (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q))
86, 7ax-mp 5 . . 3 dom *Q ⊆ dom (Q × Q)
9 dmxpid 5877 . . 3 dom (Q × Q) = Q
108, 9sseqtri 3980 . 2 dom *QQ
11 recclnq 10867 . . . . . . . 8 (𝑥Q → (*Q𝑥) ∈ Q)
12 opelxpi 5658 . . . . . . . 8 ((𝑥Q ∧ (*Q𝑥) ∈ Q) → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
1311, 12mpdan 687 . . . . . . 7 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
14 df-ov 7358 . . . . . . . 8 (𝑥 ·Q (*Q𝑥)) = ( ·Q ‘⟨𝑥, (*Q𝑥)⟩)
15 recidnq 10866 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1614, 15eqtr3id 2782 . . . . . . 7 (𝑥Q → ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)
17 ffn 6659 . . . . . . . 8 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
18 fniniseg 7002 . . . . . . . 8 ( ·Q Fn (Q × Q) → (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)))
194, 17, 18mp2b 10 . . . . . . 7 (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q))
2013, 16, 19sylanbrc 583 . . . . . 6 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}))
2120, 1eleqtrrdi 2844 . . . . 5 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
22 df-br 5096 . . . . 5 (𝑥*Q(*Q𝑥) ↔ ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
2321, 22sylibr 234 . . . 4 (𝑥Q𝑥*Q(*Q𝑥))
24 vex 3442 . . . . 5 𝑥 ∈ V
25 fvex 6844 . . . . 5 (*Q𝑥) ∈ V
2624, 25breldm 5855 . . . 4 (𝑥*Q(*Q𝑥) → 𝑥 ∈ dom *Q)
2723, 26syl 17 . . 3 (𝑥Q𝑥 ∈ dom *Q)
2827ssriv 3935 . 2 Q ⊆ dom *Q
2910, 28eqssi 3948 1 dom *Q = Q
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3899  {csn 4577  cop 4583   class class class wbr 5095   × cxp 5619  ccnv 5620  dom cdm 5621  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  Qcnq 10753  1Qc1q 10754   ·Q cmq 10757  *Qcrq 10758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399  df-er 8631  df-ni 10773  df-mi 10775  df-lti 10776  df-mpq 10810  df-enq 10812  df-nq 10813  df-erq 10814  df-mq 10816  df-1nq 10817  df-rq 10818
This theorem is referenced by:  ltrnq  10880  reclem2pr  10949
  Copyright terms: Public domain W3C validator