| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmrecnq | Structured version Visualization version GIF version | ||
| Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmrecnq | ⊢ dom *Q = Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rq 10818 | . . . . . 6 ⊢ *Q = (◡ ·Q “ {1Q}) | |
| 2 | cnvimass 6038 | . . . . . 6 ⊢ (◡ ·Q “ {1Q}) ⊆ dom ·Q | |
| 3 | 1, 2 | eqsstri 3978 | . . . . 5 ⊢ *Q ⊆ dom ·Q |
| 4 | mulnqf 10850 | . . . . . 6 ⊢ ·Q :(Q × Q)⟶Q | |
| 5 | 4 | fdmi 6670 | . . . . 5 ⊢ dom ·Q = (Q × Q) |
| 6 | 3, 5 | sseqtri 3980 | . . . 4 ⊢ *Q ⊆ (Q × Q) |
| 7 | dmss 5849 | . . . 4 ⊢ (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom *Q ⊆ dom (Q × Q) |
| 9 | dmxpid 5877 | . . 3 ⊢ dom (Q × Q) = Q | |
| 10 | 8, 9 | sseqtri 3980 | . 2 ⊢ dom *Q ⊆ Q |
| 11 | recclnq 10867 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
| 12 | opelxpi 5658 | . . . . . . . 8 ⊢ ((𝑥 ∈ Q ∧ (*Q‘𝑥) ∈ Q) → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) | |
| 13 | 11, 12 | mpdan 687 | . . . . . . 7 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) |
| 14 | df-ov 7358 | . . . . . . . 8 ⊢ (𝑥 ·Q (*Q‘𝑥)) = ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) | |
| 15 | recidnq 10866 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
| 16 | 14, 15 | eqtr3id 2782 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q) |
| 17 | ffn 6659 | . . . . . . . 8 ⊢ ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q)) | |
| 18 | fniniseg 7002 | . . . . . . . 8 ⊢ ( ·Q Fn (Q × Q) → (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q))) | |
| 19 | 4, 17, 18 | mp2b 10 | . . . . . . 7 ⊢ (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q)) |
| 20 | 13, 16, 19 | sylanbrc 583 | . . . . . 6 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q})) |
| 21 | 20, 1 | eleqtrrdi 2844 | . . . . 5 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) |
| 22 | df-br 5096 | . . . . 5 ⊢ (𝑥*Q(*Q‘𝑥) ↔ 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) | |
| 23 | 21, 22 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ Q → 𝑥*Q(*Q‘𝑥)) |
| 24 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 25 | fvex 6844 | . . . . 5 ⊢ (*Q‘𝑥) ∈ V | |
| 26 | 24, 25 | breldm 5855 | . . . 4 ⊢ (𝑥*Q(*Q‘𝑥) → 𝑥 ∈ dom *Q) |
| 27 | 23, 26 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → 𝑥 ∈ dom *Q) |
| 28 | 27 | ssriv 3935 | . 2 ⊢ Q ⊆ dom *Q |
| 29 | 10, 28 | eqssi 3948 | 1 ⊢ dom *Q = Q |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 {csn 4577 〈cop 4583 class class class wbr 5095 × cxp 5619 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Qcnq 10753 1Qc1q 10754 ·Q cmq 10757 *Qcrq 10758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ni 10773 df-mi 10775 df-lti 10776 df-mpq 10810 df-enq 10812 df-nq 10813 df-erq 10814 df-mq 10816 df-1nq 10817 df-rq 10818 |
| This theorem is referenced by: ltrnq 10880 reclem2pr 10949 |
| Copyright terms: Public domain | W3C validator |