![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmrecnq | Structured version Visualization version GIF version |
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmrecnq | ⊢ dom *Q = Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rq 9941 | . . . . . 6 ⊢ *Q = (◡ ·Q “ {1Q}) | |
2 | cnvimass 5626 | . . . . . 6 ⊢ (◡ ·Q “ {1Q}) ⊆ dom ·Q | |
3 | 1, 2 | eqsstri 3784 | . . . . 5 ⊢ *Q ⊆ dom ·Q |
4 | mulnqf 9973 | . . . . . 6 ⊢ ·Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6192 | . . . . 5 ⊢ dom ·Q = (Q × Q) |
6 | 3, 5 | sseqtri 3786 | . . . 4 ⊢ *Q ⊆ (Q × Q) |
7 | dmss 5461 | . . . 4 ⊢ (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom *Q ⊆ dom (Q × Q) |
9 | dmxpid 5483 | . . 3 ⊢ dom (Q × Q) = Q | |
10 | 8, 9 | sseqtri 3786 | . 2 ⊢ dom *Q ⊆ Q |
11 | recclnq 9990 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
12 | opelxpi 5288 | . . . . . . . 8 ⊢ ((𝑥 ∈ Q ∧ (*Q‘𝑥) ∈ Q) → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) | |
13 | 11, 12 | mpdan 667 | . . . . . . 7 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) |
14 | df-ov 6796 | . . . . . . . 8 ⊢ (𝑥 ·Q (*Q‘𝑥)) = ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) | |
15 | recidnq 9989 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
16 | 14, 15 | syl5eqr 2819 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q) |
17 | ffn 6185 | . . . . . . . 8 ⊢ ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q)) | |
18 | fniniseg 6481 | . . . . . . . 8 ⊢ ( ·Q Fn (Q × Q) → (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q))) | |
19 | 4, 17, 18 | mp2b 10 | . . . . . . 7 ⊢ (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q)) |
20 | 13, 16, 19 | sylanbrc 572 | . . . . . 6 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q})) |
21 | 20, 1 | syl6eleqr 2861 | . . . . 5 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) |
22 | df-br 4787 | . . . . 5 ⊢ (𝑥*Q(*Q‘𝑥) ↔ 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) | |
23 | 21, 22 | sylibr 224 | . . . 4 ⊢ (𝑥 ∈ Q → 𝑥*Q(*Q‘𝑥)) |
24 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | fvex 6342 | . . . . 5 ⊢ (*Q‘𝑥) ∈ V | |
26 | 24, 25 | breldm 5467 | . . . 4 ⊢ (𝑥*Q(*Q‘𝑥) → 𝑥 ∈ dom *Q) |
27 | 23, 26 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → 𝑥 ∈ dom *Q) |
28 | 27 | ssriv 3756 | . 2 ⊢ Q ⊆ dom *Q |
29 | 10, 28 | eqssi 3768 | 1 ⊢ dom *Q = Q |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 {csn 4316 〈cop 4322 class class class wbr 4786 × cxp 5247 ◡ccnv 5248 dom cdm 5249 “ cima 5252 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 Qcnq 9876 1Qc1q 9877 ·Q cmq 9880 *Qcrq 9881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-omul 7718 df-er 7896 df-ni 9896 df-mi 9898 df-lti 9899 df-mpq 9933 df-enq 9935 df-nq 9936 df-erq 9937 df-mq 9939 df-1nq 9940 df-rq 9941 |
This theorem is referenced by: ltrnq 10003 reclem2pr 10072 |
Copyright terms: Public domain | W3C validator |