Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvval Structured version   Visualization version   GIF version

Theorem dstrvval 34473
Description: The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
dstrvval.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
dstrvval (𝜑 → (𝐷𝐴) = (𝑃‘(𝑋𝐴)))
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐴,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐷(𝑎)

Proof of Theorem dstrvval
StepHypRef Expression
1 dstrvprob.3 . . 3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
21fveq1d 6908 . 2 (𝜑 → (𝐷𝐴) = ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴))
3 dstrvval.1 . . 3 (𝜑𝐴 ∈ 𝔅)
4 oveq2 7439 . . . . 5 (𝑎 = 𝐴 → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E 𝐴))
54fveq2d 6910 . . . 4 (𝑎 = 𝐴 → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
6 eqid 2737 . . . 4 (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7 fvex 6919 . . . 4 (𝑃‘(𝑋RV/𝑐 E 𝐴)) ∈ V
85, 6, 7fvmpt 7016 . . 3 (𝐴 ∈ 𝔅 → ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
93, 8syl 17 . 2 (𝜑 → ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
10 dstrvprob.1 . . . 4 (𝜑𝑃 ∈ Prob)
11 dstrvprob.2 . . . 4 (𝜑𝑋 ∈ (rRndVar‘𝑃))
1210, 11, 3orvcelval 34471 . . 3 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
1312fveq2d 6910 . 2 (𝜑 → (𝑃‘(𝑋RV/𝑐 E 𝐴)) = (𝑃‘(𝑋𝐴)))
142, 9, 133eqtrd 2781 1 (𝜑 → (𝐷𝐴) = (𝑃‘(𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cmpt 5225   E cep 5583  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  𝔅cbrsiga 34182  Probcprb 34409  rRndVarcrrv 34442  RV/𝑐corvc 34458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391  df-topgen 17488  df-top 22900  df-bases 22953  df-esum 34029  df-siga 34110  df-sigagen 34140  df-brsiga 34183  df-meas 34197  df-mbfm 34251  df-prob 34410  df-rrv 34443  df-orvc 34459
This theorem is referenced by:  dstrvprob  34474
  Copyright terms: Public domain W3C validator