Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstrvval | Structured version Visualization version GIF version |
Description: The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.) |
Ref | Expression |
---|---|
dstrvprob.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstrvprob.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
dstrvprob.3 | ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) |
dstrvval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) |
Ref | Expression |
---|---|
dstrvval | ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstrvprob.3 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) | |
2 | 1 | fveq1d 6776 | . 2 ⊢ (𝜑 → (𝐷‘𝐴) = ((𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))‘𝐴)) |
3 | dstrvval.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) | |
4 | oveq2 7283 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑋∘RV/𝑐 E 𝑎) = (𝑋∘RV/𝑐 E 𝐴)) | |
5 | 4 | fveq2d 6778 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) = (𝑃‘(𝑋∘RV/𝑐 E 𝐴))) |
6 | eqid 2738 | . . . 4 ⊢ (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) | |
7 | fvex 6787 | . . . 4 ⊢ (𝑃‘(𝑋∘RV/𝑐 E 𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6875 | . . 3 ⊢ (𝐴 ∈ 𝔅ℝ → ((𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋∘RV/𝑐 E 𝐴))) |
9 | 3, 8 | syl 17 | . 2 ⊢ (𝜑 → ((𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋∘RV/𝑐 E 𝐴))) |
10 | dstrvprob.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
11 | dstrvprob.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
12 | 10, 11, 3 | orvcelval 32435 | . . 3 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
13 | 12 | fveq2d 6778 | . 2 ⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 E 𝐴)) = (𝑃‘(◡𝑋 “ 𝐴))) |
14 | 2, 9, 13 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 E cep 5494 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 (class class class)co 7275 𝔅ℝcbrsiga 32149 Probcprb 32374 rRndVarcrrv 32407 ∘RV/𝑐corvc 32422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 df-topgen 17154 df-top 22043 df-bases 22096 df-esum 31996 df-siga 32077 df-sigagen 32107 df-brsiga 32150 df-meas 32164 df-mbfm 32218 df-prob 32375 df-rrv 32408 df-orvc 32423 |
This theorem is referenced by: dstrvprob 32438 |
Copyright terms: Public domain | W3C validator |