| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dstrvval | Structured version Visualization version GIF version | ||
| Description: The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstrvprob.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstrvprob.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| dstrvprob.3 | ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) |
| dstrvval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) |
| Ref | Expression |
|---|---|
| dstrvval | ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstrvprob.3 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) | |
| 2 | 1 | fveq1d 6860 | . 2 ⊢ (𝜑 → (𝐷‘𝐴) = ((𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))‘𝐴)) |
| 3 | dstrvval.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) | |
| 4 | oveq2 7395 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑋∘RV/𝑐 E 𝑎) = (𝑋∘RV/𝑐 E 𝐴)) | |
| 5 | 4 | fveq2d 6862 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) = (𝑃‘(𝑋∘RV/𝑐 E 𝐴))) |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) | |
| 7 | fvex 6871 | . . . 4 ⊢ (𝑃‘(𝑋∘RV/𝑐 E 𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6968 | . . 3 ⊢ (𝐴 ∈ 𝔅ℝ → ((𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋∘RV/𝑐 E 𝐴))) |
| 9 | 3, 8 | syl 17 | . 2 ⊢ (𝜑 → ((𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋∘RV/𝑐 E 𝐴))) |
| 10 | dstrvprob.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 11 | dstrvprob.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 12 | 10, 11, 3 | orvcelval 34460 | . . 3 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
| 13 | 12 | fveq2d 6862 | . 2 ⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 E 𝐴)) = (𝑃‘(◡𝑋 “ 𝐴))) |
| 14 | 2, 9, 13 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 E cep 5537 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 𝔅ℝcbrsiga 34171 Probcprb 34398 rRndVarcrrv 34431 ∘RV/𝑐corvc 34447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-bases 22833 df-esum 34018 df-siga 34099 df-sigagen 34129 df-brsiga 34172 df-meas 34186 df-mbfm 34240 df-prob 34399 df-rrv 34432 df-orvc 34448 |
| This theorem is referenced by: dstrvprob 34463 |
| Copyright terms: Public domain | W3C validator |