Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvval Structured version   Visualization version   GIF version

Theorem dstrvval 34505
Description: The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
dstrvval.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
dstrvval (𝜑 → (𝐷𝐴) = (𝑃‘(𝑋𝐴)))
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐴,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐷(𝑎)

Proof of Theorem dstrvval
StepHypRef Expression
1 dstrvprob.3 . . 3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
21fveq1d 6830 . 2 (𝜑 → (𝐷𝐴) = ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴))
3 dstrvval.1 . . 3 (𝜑𝐴 ∈ 𝔅)
4 oveq2 7360 . . . . 5 (𝑎 = 𝐴 → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E 𝐴))
54fveq2d 6832 . . . 4 (𝑎 = 𝐴 → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
6 eqid 2733 . . . 4 (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7 fvex 6841 . . . 4 (𝑃‘(𝑋RV/𝑐 E 𝐴)) ∈ V
85, 6, 7fvmpt 6935 . . 3 (𝐴 ∈ 𝔅 → ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
93, 8syl 17 . 2 (𝜑 → ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
10 dstrvprob.1 . . . 4 (𝜑𝑃 ∈ Prob)
11 dstrvprob.2 . . . 4 (𝜑𝑋 ∈ (rRndVar‘𝑃))
1210, 11, 3orvcelval 34503 . . 3 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
1312fveq2d 6832 . 2 (𝜑 → (𝑃‘(𝑋RV/𝑐 E 𝐴)) = (𝑃‘(𝑋𝐴)))
142, 9, 133eqtrd 2772 1 (𝜑 → (𝐷𝐴) = (𝑃‘(𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cmpt 5174   E cep 5518  ccnv 5618  cima 5622  cfv 6486  (class class class)co 7352  𝔅cbrsiga 34215  Probcprb 34441  rRndVarcrrv 34474  RV/𝑐corvc 34490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ioo 13251  df-topgen 17349  df-top 22810  df-bases 22862  df-esum 34062  df-siga 34143  df-sigagen 34173  df-brsiga 34216  df-meas 34230  df-mbfm 34284  df-prob 34442  df-rrv 34475  df-orvc 34491
This theorem is referenced by:  dstrvprob  34506
  Copyright terms: Public domain W3C validator