Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvval Structured version   Visualization version   GIF version

Theorem dstrvval 34469
Description: The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
dstrvval.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
dstrvval (𝜑 → (𝐷𝐴) = (𝑃‘(𝑋𝐴)))
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐴,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐷(𝑎)

Proof of Theorem dstrvval
StepHypRef Expression
1 dstrvprob.3 . . 3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
21fveq1d 6863 . 2 (𝜑 → (𝐷𝐴) = ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴))
3 dstrvval.1 . . 3 (𝜑𝐴 ∈ 𝔅)
4 oveq2 7398 . . . . 5 (𝑎 = 𝐴 → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E 𝐴))
54fveq2d 6865 . . . 4 (𝑎 = 𝐴 → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
6 eqid 2730 . . . 4 (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7 fvex 6874 . . . 4 (𝑃‘(𝑋RV/𝑐 E 𝐴)) ∈ V
85, 6, 7fvmpt 6971 . . 3 (𝐴 ∈ 𝔅 → ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
93, 8syl 17 . 2 (𝜑 → ((𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎)))‘𝐴) = (𝑃‘(𝑋RV/𝑐 E 𝐴)))
10 dstrvprob.1 . . . 4 (𝜑𝑃 ∈ Prob)
11 dstrvprob.2 . . . 4 (𝜑𝑋 ∈ (rRndVar‘𝑃))
1210, 11, 3orvcelval 34467 . . 3 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
1312fveq2d 6865 . 2 (𝜑 → (𝑃‘(𝑋RV/𝑐 E 𝐴)) = (𝑃‘(𝑋𝐴)))
142, 9, 133eqtrd 2769 1 (𝜑 → (𝐷𝐴) = (𝑃‘(𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191   E cep 5540  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390  𝔅cbrsiga 34178  Probcprb 34405  rRndVarcrrv 34438  RV/𝑐corvc 34454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317  df-topgen 17413  df-top 22788  df-bases 22840  df-esum 34025  df-siga 34106  df-sigagen 34136  df-brsiga 34179  df-meas 34193  df-mbfm 34247  df-prob 34406  df-rrv 34439  df-orvc 34455
This theorem is referenced by:  dstrvprob  34470
  Copyright terms: Public domain W3C validator