Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0mulgnn0 | Structured version Visualization version GIF version |
Description: The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
Ref | Expression |
---|---|
xrge0mulgnn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
2 | iccssxr 13091 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
3 | xrsbas 20526 | . . . 4 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
4 | 2, 3 | sseqtri 3953 | . . 3 ⊢ (0[,]+∞) ⊆ (Base‘ℝ*𝑠) |
5 | eqid 2738 | . . 3 ⊢ (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠) | |
6 | eqid 2738 | . . 3 ⊢ (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠) | |
7 | xrs0 31186 | . . . 4 ⊢ 0 = (0g‘ℝ*𝑠) | |
8 | xrge00 31197 | . . . 4 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
9 | 7, 8 | eqtr3i 2768 | . . 3 ⊢ (0g‘ℝ*𝑠) = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
10 | 1, 4, 5, 6, 9 | ressmulgnn0 31195 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵)) |
11 | nn0z 12273 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
12 | eliccxr 13096 | . . 3 ⊢ (𝐵 ∈ (0[,]+∞) → 𝐵 ∈ ℝ*) | |
13 | xrsmulgzz 31189 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | |
14 | 11, 12, 13 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) |
15 | 10, 14 | eqtrd 2778 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ℕ0cn0 12163 ℤcz 12249 ·e cxmu 12776 [,]cicc 13011 Basecbs 16840 ↾s cress 16867 0gc0g 17067 ℝ*𝑠cxrs 17128 invgcminusg 18493 .gcmg 18615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-seq 13650 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-xrs 17130 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-minusg 18496 df-mulg 18616 df-cmn 19303 |
This theorem is referenced by: esumcst 31931 |
Copyright terms: Public domain | W3C validator |