Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulgnn0 Structured version   Visualization version   GIF version

Theorem xrge0mulgnn0 32996
Description: The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Assertion
Ref Expression
xrge0mulgnn0 ((𝐴 ∈ ℕ0𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵))

Proof of Theorem xrge0mulgnn0
StepHypRef Expression
1 eqid 2731 . . 3 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
2 iccssxr 13330 . . . 4 (0[,]+∞) ⊆ ℝ*
3 xrsbas 17510 . . . 4 * = (Base‘ℝ*𝑠)
42, 3sseqtri 3978 . . 3 (0[,]+∞) ⊆ (Base‘ℝ*𝑠)
5 eqid 2731 . . 3 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
6 eqid 2731 . . 3 (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠)
7 xrs0 32987 . . . 4 0 = (0g‘ℝ*𝑠)
8 xrge00 32995 . . . 4 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
97, 8eqtr3i 2756 . . 3 (0g‘ℝ*𝑠) = (0g‘(ℝ*𝑠s (0[,]+∞)))
101, 4, 5, 6, 9ressmulgnn0 18990 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵))
11 nn0z 12493 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
12 eliccxr 13335 . . 3 (𝐵 ∈ (0[,]+∞) → 𝐵 ∈ ℝ*)
13 xrsmulgzz 32990 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
1411, 12, 13syl2an 596 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
1510, 14eqtrd 2766 1 ((𝐴 ∈ ℕ0𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145  0cn0 12381  cz 12468   ·e cxmu 13010  [,]cicc 13248  Basecbs 17120  s cress 17141  0gc0g 17343  *𝑠cxrs 17404  invgcminusg 18847  .gcmg 18980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-xrs 17406  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-minusg 18850  df-mulg 18981  df-cmn 19694
This theorem is referenced by:  esumcst  34076
  Copyright terms: Public domain W3C validator