![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0mulgnn0 | Structured version Visualization version GIF version |
Description: The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
Ref | Expression |
---|---|
xrge0mulgnn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2798 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
2 | iccssxr 12502 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
3 | xrsbas 20081 | . . . 4 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
4 | 2, 3 | sseqtri 3832 | . . 3 ⊢ (0[,]+∞) ⊆ (Base‘ℝ*𝑠) |
5 | eqid 2798 | . . 3 ⊢ (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠) | |
6 | eqid 2798 | . . 3 ⊢ (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠) | |
7 | xrs0 30184 | . . . 4 ⊢ 0 = (0g‘ℝ*𝑠) | |
8 | xrge00 30195 | . . . 4 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
9 | 7, 8 | eqtr3i 2822 | . . 3 ⊢ (0g‘ℝ*𝑠) = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
10 | 1, 4, 5, 6, 9 | ressmulgnn0 30193 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵)) |
11 | nn0z 11687 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
12 | eliccxr 12506 | . . 3 ⊢ (𝐵 ∈ (0[,]+∞) → 𝐵 ∈ ℝ*) | |
13 | xrsmulgzz 30187 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | |
14 | 11, 12, 13 | syl2an 590 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) |
15 | 10, 14 | eqtrd 2832 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ‘cfv 6100 (class class class)co 6877 0cc0 10223 +∞cpnf 10359 ℝ*cxr 10361 ℕ0cn0 11577 ℤcz 11663 ·e cxmu 12189 [,]cicc 12424 Basecbs 16181 ↾s cress 16182 0gc0g 16412 ℝ*𝑠cxrs 16472 invgcminusg 17736 .gcmg 17853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-inf2 8787 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-int 4667 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-oadd 7802 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-z 11664 df-dec 11781 df-uz 11928 df-xneg 12190 df-xadd 12191 df-xmul 12192 df-icc 12428 df-fz 12578 df-seq 13053 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-tset 16283 df-ple 16284 df-ds 16286 df-0g 16414 df-xrs 16474 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-minusg 17739 df-mulg 17854 df-cmn 18507 |
This theorem is referenced by: esumcst 30634 |
Copyright terms: Public domain | W3C validator |