Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0infss Structured version   Visualization version   GIF version

Theorem xrge0infss 30985
Description: Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
xrge0infss (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrge0infss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3912 . . . . . . 7 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑦𝐴) → 𝑦 ∈ (0[,]+∞))
2 0xr 10953 . . . . . . . . 9 0 ∈ ℝ*
3 pnfxr 10960 . . . . . . . . 9 +∞ ∈ ℝ*
4 iccgelb 13064 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
52, 3, 4mp3an12 1449 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → 0 ≤ 𝑦)
6 eliccxr 13096 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
7 xrlenlt 10971 . . . . . . . . 9 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
82, 6, 7sylancr 586 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
95, 8mpbid 231 . . . . . . 7 (𝑦 ∈ (0[,]+∞) → ¬ 𝑦 < 0)
101, 9syl 17 . . . . . 6 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑦𝐴) → ¬ 𝑦 < 0)
1110ralrimiva 3107 . . . . 5 (𝐴 ⊆ (0[,]+∞) → ∀𝑦𝐴 ¬ 𝑦 < 0)
1211ad3antrrr 726 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦𝐴 ¬ 𝑦 < 0)
13 iccssxr 13091 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
14 ssralv 3983 . . . . . . . . . 10 ((0[,]+∞) ⊆ ℝ* → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
1513, 14ax-mp 5 . . . . . . . . 9 (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
16 simplll 771 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 ∈ ℝ*)
172a1i 11 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 0 ∈ ℝ*)
18 simplr 765 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑦 ∈ (0[,]+∞))
1913, 18sselid 3915 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑦 ∈ ℝ*)
20 simpllr 772 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 ≤ 0)
21 simpr 484 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 0 < 𝑦)
2216, 17, 19, 20, 21xrlelttrd 12823 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 < 𝑦)
2322ex 412 . . . . . . . . . . 11 (((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) → (0 < 𝑦𝑤 < 𝑦))
2423imim1d 82 . . . . . . . . . 10 (((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → (0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralimdva 3102 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝑤 ≤ 0) → (∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2615, 25syl5 34 . . . . . . . 8 ((𝑤 ∈ ℝ*𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2726adantll 710 . . . . . . 7 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2827imp 406 . . . . . 6 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2928adantrl 712 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3029an32s 648 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
31 0e0iccpnf 13120 . . . . 5 0 ∈ (0[,]+∞)
32 breq2 5074 . . . . . . . . 9 (𝑥 = 0 → (𝑦 < 𝑥𝑦 < 0))
3332notbid 317 . . . . . . . 8 (𝑥 = 0 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 0))
3433ralbidv 3120 . . . . . . 7 (𝑥 = 0 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 0))
35 breq1 5073 . . . . . . . . 9 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
3635imbi1d 341 . . . . . . . 8 (𝑥 = 0 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3736ralbidv 3120 . . . . . . 7 (𝑥 = 0 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3834, 37anbi12d 630 . . . . . 6 (𝑥 = 0 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3938rspcev 3552 . . . . 5 ((0 ∈ (0[,]+∞) ∧ (∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4031, 39mpan 686 . . . 4 ((∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4112, 30, 40syl2anc 583 . . 3 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42 simpllr 772 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ ℝ*)
43 simpr 484 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤)
44 elxrge0 13118 . . . . 5 (𝑤 ∈ (0[,]+∞) ↔ (𝑤 ∈ ℝ* ∧ 0 ≤ 𝑤))
4542, 43, 44sylanbrc 582 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]+∞))
4615a1i 11 . . . . . . . 8 (𝐴 ⊆ (0[,]+∞) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4746anim2d 611 . . . . . . 7 (𝐴 ⊆ (0[,]+∞) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4847adantr 480 . . . . . 6 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4948imp 406 . . . . 5 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5049adantr 480 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 breq2 5074 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
5251notbid 317 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤))
5352ralbidv 3120 . . . . . 6 (𝑥 = 𝑤 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑤))
54 breq1 5073 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 < 𝑦𝑤 < 𝑦))
5554imbi1d 341 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5655ralbidv 3120 . . . . . 6 (𝑥 = 𝑤 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5753, 56anbi12d 630 . . . . 5 (𝑥 = 𝑤 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
5857rspcev 3552 . . . 4 ((𝑤 ∈ (0[,]+∞) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5945, 50, 58syl2anc 583 . . 3 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
60 simplr 765 . . . 4 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → 𝑤 ∈ ℝ*)
612a1i 11 . . . 4 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → 0 ∈ ℝ*)
62 xrletri 12816 . . . 4 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤))
6360, 61, 62syl2anc 583 . . 3 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤))
6441, 59, 63mpjaodan 955 . 2 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
65 sstr 3925 . . . 4 ((𝐴 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
6613, 65mpan2 687 . . 3 (𝐴 ⊆ (0[,]+∞) → 𝐴 ⊆ ℝ*)
67 xrinfmss 12973 . . 3 (𝐴 ⊆ ℝ* → ∃𝑤 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
6866, 67syl 17 . 2 (𝐴 ⊆ (0[,]+∞) → ∃𝑤 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
6964, 68r19.29a 3217 1 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-icc 13015
This theorem is referenced by:  xrge0infssd  30986  infxrge0lb  30989  infxrge0glb  30990  infxrge0gelb  30991  omsf  32163  omssubaddlem  32166  omssubadd  32167
  Copyright terms: Public domain W3C validator