| Step | Hyp | Ref
| Expression |
| 1 | | ssel2 3978 |
. . . . . . 7
⊢ ((𝐴 ⊆ (0[,]+∞) ∧
𝑦 ∈ 𝐴) → 𝑦 ∈ (0[,]+∞)) |
| 2 | | 0xr 11308 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 3 | | pnfxr 11315 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
| 4 | | iccgelb 13443 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝑦 ∈ (0[,]+∞))
→ 0 ≤ 𝑦) |
| 5 | 2, 3, 4 | mp3an12 1453 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]+∞) → 0
≤ 𝑦) |
| 6 | | eliccxr 13475 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,]+∞) →
𝑦 ∈
ℝ*) |
| 7 | | xrlenlt 11326 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (0 ≤
𝑦 ↔ ¬ 𝑦 < 0)) |
| 8 | 2, 6, 7 | sylancr 587 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]+∞) → (0
≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
| 9 | 5, 8 | mpbid 232 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,]+∞) →
¬ 𝑦 <
0) |
| 10 | 1, 9 | syl 17 |
. . . . . 6
⊢ ((𝐴 ⊆ (0[,]+∞) ∧
𝑦 ∈ 𝐴) → ¬ 𝑦 < 0) |
| 11 | 10 | ralrimiva 3146 |
. . . . 5
⊢ (𝐴 ⊆ (0[,]+∞) →
∀𝑦 ∈ 𝐴 ¬ 𝑦 < 0) |
| 12 | 11 | ad3antrrr 730 |
. . . 4
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦 ∈ 𝐴 ¬ 𝑦 < 0) |
| 13 | | iccssxr 13470 |
. . . . . . . . . 10
⊢
(0[,]+∞) ⊆ ℝ* |
| 14 | | ssralv 4052 |
. . . . . . . . . 10
⊢
((0[,]+∞) ⊆ ℝ* → (∀𝑦 ∈ ℝ*
(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
ℝ* (𝑤 <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
| 16 | | simplll 775 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 𝑤 ∈
ℝ*) |
| 17 | 2 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 0 ∈
ℝ*) |
| 18 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 𝑦 ∈
(0[,]+∞)) |
| 19 | 13, 18 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 𝑦 ∈
ℝ*) |
| 20 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 𝑤 ≤ 0) |
| 21 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 0 < 𝑦) |
| 22 | 16, 17, 19, 20, 21 | xrlelttrd 13202 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0
< 𝑦) → 𝑤 < 𝑦) |
| 23 | 22 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) →
(0 < 𝑦 → 𝑤 < 𝑦)) |
| 24 | 23 | imim1d 82 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) →
((𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → (0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 25 | 24 | ralimdva 3167 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) →
(∀𝑦 ∈
(0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 26 | 15, 25 | syl5 34 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℝ*
∧ 𝑤 ≤ 0) →
(∀𝑦 ∈
ℝ* (𝑤 <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 27 | 26 | adantll 714 |
. . . . . . 7
⊢ (((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ 𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 28 | 27 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ 𝑤 ≤ 0) ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
| 29 | 28 | adantrl 716 |
. . . . 5
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ 𝑤 ≤ 0) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
| 30 | 29 | an32s 652 |
. . . 4
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
| 31 | | 0e0iccpnf 13499 |
. . . . 5
⊢ 0 ∈
(0[,]+∞) |
| 32 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑦 < 𝑥 ↔ 𝑦 < 0)) |
| 33 | 32 | notbid 318 |
. . . . . . . 8
⊢ (𝑥 = 0 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 0)) |
| 34 | 33 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦 < 0)) |
| 35 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦)) |
| 36 | 35 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 37 | 36 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑥 = 0 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 38 | 34, 37 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = 0 → ((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
| 39 | 38 | rspcev 3622 |
. . . . 5
⊢ ((0
∈ (0[,]+∞) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 40 | 31, 39 | mpan 690 |
. . . 4
⊢
((∀𝑦 ∈
𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 41 | 12, 30, 40 | syl2anc 584 |
. . 3
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 42 | | simpllr 776 |
. . . . 5
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ ℝ*) |
| 43 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤) |
| 44 | | elxrge0 13497 |
. . . . 5
⊢ (𝑤 ∈ (0[,]+∞) ↔
(𝑤 ∈
ℝ* ∧ 0 ≤ 𝑤)) |
| 45 | 42, 43, 44 | sylanbrc 583 |
. . . 4
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]+∞)) |
| 46 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ⊆ (0[,]+∞) →
(∀𝑦 ∈
ℝ* (𝑤 <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 47 | 46 | anim2d 612 |
. . . . . . 7
⊢ (𝐴 ⊆ (0[,]+∞) →
((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
| 48 | 47 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) → ((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
| 49 | 48 | imp 406 |
. . . . 5
⊢ (((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 50 | 49 | adantr 480 |
. . . 4
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 51 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑤)) |
| 52 | 51 | notbid 318 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤)) |
| 53 | 52 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤)) |
| 54 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑥 < 𝑦 ↔ 𝑤 < 𝑦)) |
| 55 | 54 | imbi1d 341 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 56 | 55 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 57 | 53, 56 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = 𝑤 → ((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
| 58 | 57 | rspcev 3622 |
. . . 4
⊢ ((𝑤 ∈ (0[,]+∞) ∧
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 59 | 45, 50, 58 | syl2anc 584 |
. . 3
⊢ ((((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 60 | | simplr 769 |
. . . 4
⊢ (((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → 𝑤 ∈ ℝ*) |
| 61 | 2 | a1i 11 |
. . . 4
⊢ (((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → 0 ∈
ℝ*) |
| 62 | | xrletri 13195 |
. . . 4
⊢ ((𝑤 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤)) |
| 63 | 60, 61, 62 | syl2anc 584 |
. . 3
⊢ (((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤)) |
| 64 | 41, 59, 63 | mpjaodan 961 |
. 2
⊢ (((𝐴 ⊆ (0[,]+∞) ∧
𝑤 ∈
ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 65 | | sstr 3992 |
. . . 4
⊢ ((𝐴 ⊆ (0[,]+∞) ∧
(0[,]+∞) ⊆ ℝ*) → 𝐴 ⊆
ℝ*) |
| 66 | 13, 65 | mpan2 691 |
. . 3
⊢ (𝐴 ⊆ (0[,]+∞) →
𝐴 ⊆
ℝ*) |
| 67 | | xrinfmss 13352 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ ∃𝑤 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 68 | 66, 67 | syl 17 |
. 2
⊢ (𝐴 ⊆ (0[,]+∞) →
∃𝑤 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 69 | 64, 68 | r19.29a 3162 |
1
⊢ (𝐴 ⊆ (0[,]+∞) →
∃𝑥 ∈
(0[,]+∞)(∀𝑦
∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |