![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardun | Structured version Visualization version GIF version |
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) Avoid ax-rep 5285. (Revised by BTernaryTau, 3-Jul-2024.) |
Ref | Expression |
---|---|
ficardun | β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (cardβ(π΄ βͺ π΅)) = ((cardβπ΄) +o (cardβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardadju 10193 | . . . . . 6 β’ ((π΄ β Fin β§ π΅ β Fin) β (π΄ β π΅) β ((cardβπ΄) +o (cardβπ΅))) | |
2 | 1 | 3adant3 1132 | . . . . 5 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (π΄ β π΅) β ((cardβπ΄) +o (cardβπ΅))) |
3 | 2 | ensymd 9000 | . . . 4 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β ((cardβπ΄) +o (cardβπ΅)) β (π΄ β π΅)) |
4 | endjudisj 10162 | . . . 4 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (π΄ β π΅) β (π΄ βͺ π΅)) | |
5 | entr 9001 | . . . 4 β’ ((((cardβπ΄) +o (cardβπ΅)) β (π΄ β π΅) β§ (π΄ β π΅) β (π΄ βͺ π΅)) β ((cardβπ΄) +o (cardβπ΅)) β (π΄ βͺ π΅)) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β ((cardβπ΄) +o (cardβπ΅)) β (π΄ βͺ π΅)) |
7 | carden2b 9961 | . . 3 β’ (((cardβπ΄) +o (cardβπ΅)) β (π΄ βͺ π΅) β (cardβ((cardβπ΄) +o (cardβπ΅))) = (cardβ(π΄ βͺ π΅))) | |
8 | 6, 7 | syl 17 | . 2 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (cardβ((cardβπ΄) +o (cardβπ΅))) = (cardβ(π΄ βͺ π΅))) |
9 | ficardom 9955 | . . . 4 β’ (π΄ β Fin β (cardβπ΄) β Ο) | |
10 | ficardom 9955 | . . . 4 β’ (π΅ β Fin β (cardβπ΅) β Ο) | |
11 | nnacl 8610 | . . . . 5 β’ (((cardβπ΄) β Ο β§ (cardβπ΅) β Ο) β ((cardβπ΄) +o (cardβπ΅)) β Ο) | |
12 | cardnn 9957 | . . . . 5 β’ (((cardβπ΄) +o (cardβπ΅)) β Ο β (cardβ((cardβπ΄) +o (cardβπ΅))) = ((cardβπ΄) +o (cardβπ΅))) | |
13 | 11, 12 | syl 17 | . . . 4 β’ (((cardβπ΄) β Ο β§ (cardβπ΅) β Ο) β (cardβ((cardβπ΄) +o (cardβπ΅))) = ((cardβπ΄) +o (cardβπ΅))) |
14 | 9, 10, 13 | syl2an 596 | . . 3 β’ ((π΄ β Fin β§ π΅ β Fin) β (cardβ((cardβπ΄) +o (cardβπ΅))) = ((cardβπ΄) +o (cardβπ΅))) |
15 | 14 | 3adant3 1132 | . 2 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (cardβ((cardβπ΄) +o (cardβπ΅))) = ((cardβπ΄) +o (cardβπ΅))) |
16 | 8, 15 | eqtr3d 2774 | 1 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (cardβ(π΄ βͺ π΅)) = ((cardβπ΄) +o (cardβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βͺ cun 3946 β© cin 3947 β c0 4322 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Οcom 7854 +o coa 8462 β cen 8935 Fincfn 8938 β cdju 9892 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 |
This theorem is referenced by: hashun 14341 |
Copyright terms: Public domain | W3C validator |