![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardun | Structured version Visualization version GIF version |
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) Avoid ax-rep 5290. (Revised by BTernaryTau, 3-Jul-2024.) |
Ref | Expression |
---|---|
ficardun | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘(𝐴 ∪ 𝐵)) = ((card‘𝐴) +o (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardadju 10242 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | |
2 | 1 | 3adant3 1129 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) |
3 | 2 | ensymd 9036 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) |
4 | endjudisj 10211 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | |
5 | entr 9037 | . . . 4 ⊢ ((((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
6 | 3, 4, 5 | syl2anc 582 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ∪ 𝐵)) |
7 | carden2b 10010 | . . 3 ⊢ (((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ∪ 𝐵) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴 ∪ 𝐵))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴 ∪ 𝐵))) |
9 | ficardom 10004 | . . . 4 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
10 | ficardom 10004 | . . . 4 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
11 | nnacl 8641 | . . . . 5 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) | |
12 | cardnn 10006 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
14 | 9, 10, 13 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
15 | 14 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
16 | 8, 15 | eqtr3d 2768 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘(𝐴 ∪ 𝐵)) = ((card‘𝐴) +o (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 ∩ cin 3946 ∅c0 4325 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ωcom 7876 +o coa 8493 ≈ cen 8971 Fincfn 8974 ⊔ cdju 9941 cardccrd 9978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 |
This theorem is referenced by: hashun 14399 |
Copyright terms: Public domain | W3C validator |