MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardun Structured version   Visualization version   GIF version

Theorem ficardun 9227
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ficardun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +𝑜 (card‘𝐵)))

Proof of Theorem ficardun
StepHypRef Expression
1 finnum 8975 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 finnum 8975 . . . . . . 7 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
3 cardacda 9223 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵)))
41, 2, 3syl2an 577 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵)))
543adant3 1126 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵)))
65ensymd 8161 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴 +𝑐 𝐵))
7 cdaun 9197 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵))
8 entr 8162 . . . 4 ((((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵)) → ((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴𝐵))
96, 7, 8syl2anc 567 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴𝐵))
10 carden2b 8994 . . 3 (((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴𝐵) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = (card‘(𝐴𝐵)))
119, 10syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = (card‘(𝐴𝐵)))
12 ficardom 8988 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
13 ficardom 8988 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
14 nnacl 7846 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω)
15 cardnn 8990 . . . . 5 (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
1614, 15syl 17 . . . 4 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
1712, 13, 16syl2an 577 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
18173adant3 1126 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
1911, 18eqtr3d 2807 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +𝑜 (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cun 3722  cin 3723  c0 4064   class class class wbr 4787  dom cdm 5250  cfv 6032  (class class class)co 6794  ωcom 7213   +𝑜 coa 7711  cen 8107  Fincfn 8110  cardccrd 8962   +𝑐 ccda 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-card 8966  df-cda 9193
This theorem is referenced by:  hashun  13374
  Copyright terms: Public domain W3C validator