MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardun Structured version   Visualization version   GIF version

Theorem ficardun 9310
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ficardun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +𝑜 (card‘𝐵)))

Proof of Theorem ficardun
StepHypRef Expression
1 finnum 9058 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 finnum 9058 . . . . . . 7 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
3 cardacda 9306 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵)))
41, 2, 3syl2an 590 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵)))
543adant3 1163 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵)))
65ensymd 8244 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴 +𝑐 𝐵))
7 cdaun 9280 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵))
8 entr 8245 . . . 4 ((((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵)) → ((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴𝐵))
96, 7, 8syl2anc 580 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴𝐵))
10 carden2b 9077 . . 3 (((card‘𝐴) +𝑜 (card‘𝐵)) ≈ (𝐴𝐵) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = (card‘(𝐴𝐵)))
119, 10syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = (card‘(𝐴𝐵)))
12 ficardom 9071 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
13 ficardom 9071 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
14 nnacl 7929 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω)
15 cardnn 9073 . . . . 5 (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
1614, 15syl 17 . . . 4 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
1712, 13, 16syl2an 590 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
18173adant3 1163 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵)))
1911, 18eqtr3d 2833 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +𝑜 (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  cun 3765  cin 3766  c0 4113   class class class wbr 4841  dom cdm 5310  cfv 6099  (class class class)co 6876  ωcom 7297   +𝑜 coa 7794  cen 8190  Fincfn 8193  cardccrd 9045   +𝑐 ccda 9275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-cda 9276
This theorem is referenced by:  hashun  13417
  Copyright terms: Public domain W3C validator