![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardun | Structured version Visualization version GIF version |
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) Avoid ax-rep 5241. (Revised by BTernaryTau, 3-Jul-2024.) |
Ref | Expression |
---|---|
ficardun | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘(𝐴 ∪ 𝐵)) = ((card‘𝐴) +o (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardadju 10094 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | |
2 | 1 | 3adant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) |
3 | 2 | ensymd 8904 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) |
4 | endjudisj 10063 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | |
5 | entr 8905 | . . . 4 ⊢ ((((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
6 | 3, 4, 5 | syl2anc 585 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ∪ 𝐵)) |
7 | carden2b 9862 | . . 3 ⊢ (((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ∪ 𝐵) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴 ∪ 𝐵))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴 ∪ 𝐵))) |
9 | ficardom 9856 | . . . 4 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
10 | ficardom 9856 | . . . 4 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
11 | nnacl 8551 | . . . . 5 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) | |
12 | cardnn 9858 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
14 | 9, 10, 13 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
15 | 14 | 3adant3 1133 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
16 | 8, 15 | eqtr3d 2780 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘(𝐴 ∪ 𝐵)) = ((card‘𝐴) +o (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∪ cun 3907 ∩ cin 3908 ∅c0 4281 class class class wbr 5104 ‘cfv 6494 (class class class)co 7352 ωcom 7795 +o coa 8402 ≈ cen 8839 Fincfn 8842 ⊔ cdju 9793 cardccrd 9830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7796 df-1st 7914 df-2nd 7915 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-1o 8405 df-oadd 8409 df-er 8607 df-en 8843 df-dom 8844 df-sdom 8845 df-fin 8846 df-dju 9796 df-card 9834 |
This theorem is referenced by: hashun 14236 |
Copyright terms: Public domain | W3C validator |