MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardunOLD Structured version   Visualization version   GIF version

Theorem ficardunOLD 10246
Description: Obsolete version of ficardun 10245 as of 3-Jul-2024. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ficardunOLD ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardunOLD
StepHypRef Expression
1 finnum 9993 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 finnum 9993 . . . . . . 7 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
3 cardadju 10239 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
41, 2, 3syl2an 594 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
543adant3 1129 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
65ensymd 9038 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
7 endjudisj 10213 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
8 entr 9039 . . . 4 ((((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵) ∧ (𝐴𝐵) ≈ (𝐴𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
96, 7, 8syl2anc 582 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
10 carden2b 10012 . . 3 (((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴𝐵)))
119, 10syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴𝐵)))
12 ficardom 10006 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
13 ficardom 10006 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
14 nnacl 8643 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
15 cardnn 10008 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1614, 15syl 17 . . . 4 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1712, 13, 16syl2an 594 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
18173adant3 1129 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1911, 18eqtr3d 2768 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cun 3945  cin 3946  c0 4325   class class class wbr 5155  dom cdm 5684  cfv 6556  (class class class)co 7426  ωcom 7878   +o coa 8495  cen 8973  Fincfn 8976  cdju 9943  cardccrd 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-oadd 8502  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-dju 9946  df-card 9984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator