MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngim Structured version   Visualization version   GIF version

Theorem rngqiprngim 21276
Description: 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngim (𝜑𝐹 ∈ (𝑅 RngIso 𝑃))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngim
StepHypRef Expression
1 rng2idlring.r . . 3 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . 3 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . 3 (𝜑𝐽 ∈ Ring)
5 rng2idlring.b . . 3 𝐵 = (Base‘𝑅)
6 rng2idlring.t . . 3 · = (.r𝑅)
7 rng2idlring.1 . . 3 1 = (1r𝐽)
8 rngqiprngim.g . . 3 = (𝑅 ~QG 𝐼)
9 rngqiprngim.q . . 3 𝑄 = (𝑅 /s )
10 rngqiprngim.c . . 3 𝐶 = (Base‘𝑄)
11 rngqiprngim.p . . 3 𝑃 = (𝑄 ×s 𝐽)
12 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngho 21275 . 2 (𝜑𝐹 ∈ (𝑅 RngHom 𝑃))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngimf1 21272 . . . 4 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngimfo 21273 . . . 4 (𝜑𝐹:𝐵onto→(𝐶 × 𝐼))
16 df-f1o 6548 . . . 4 (𝐹:𝐵1-1-onto→(𝐶 × 𝐼) ↔ (𝐹:𝐵1-1→(𝐶 × 𝐼) ∧ 𝐹:𝐵onto→(𝐶 × 𝐼)))
1714, 15, 16sylanbrc 583 . . 3 (𝜑𝐹:𝐵1-1-onto→(𝐶 × 𝐼))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11rngqipbas 21267 . . . 4 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
1918f1oeq3d 6825 . . 3 (𝜑 → (𝐹:𝐵1-1-onto→(Base‘𝑃) ↔ 𝐹:𝐵1-1-onto→(𝐶 × 𝐼)))
2017, 19mpbird 257 . 2 (𝜑𝐹:𝐵1-1-onto→(Base‘𝑃))
2111ovexi 7447 . . 3 𝑃 ∈ V
22 eqid 2734 . . . 4 (Base‘𝑃) = (Base‘𝑃)
235, 22isrngim2 20421 . . 3 ((𝑅 ∈ Rng ∧ 𝑃 ∈ V) → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵1-1-onto→(Base‘𝑃))))
241, 21, 23sylancl 586 . 2 (𝜑 → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵1-1-onto→(Base‘𝑃))))
2513, 20, 24mpbir2and 713 1 (𝜑𝐹 ∈ (𝑅 RngIso 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cop 4612  cmpt 5205   × cxp 5663  1-1wf1 6538  ontowfo 6539  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  [cec 8725  Basecbs 17229  s cress 17252  .rcmulr 17274   /s cqus 17521   ×s cxps 17522   ~QG cqg 19109  Rngcrng 20117  1rcur 20146  Ringcrg 20198   RngHom crnghm 20402   RngIso crngim 20403  2Idealc2idl 21221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-ec 8729  df-qs 8733  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-prds 17463  df-imas 17524  df-qus 17525  df-xps 17526  df-mgm 18622  df-mgmhm 18674  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-nsg 19111  df-eqg 19112  df-ghm 19200  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-rnghm 20404  df-rngim 20405  df-subrng 20514  df-lss 20898  df-sra 21140  df-rgmod 21141  df-lidl 21180  df-2idl 21222
This theorem is referenced by:  rngringbdlem2  21279  rngqiprngu  21290
  Copyright terms: Public domain W3C validator