| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngim | Structured version Visualization version GIF version | ||
| Description: 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
| Ref | Expression |
|---|---|
| rngqiprngim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rng2idlring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rng2idlring.j | . . 3 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | rng2idlring.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | rng2idlring.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 7 | rng2idlring.1 | . . 3 ⊢ 1 = (1r‘𝐽) | |
| 8 | rngqiprngim.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 9 | rngqiprngim.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 10 | rngqiprngim.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 11 | rngqiprngim.p | . . 3 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
| 12 | rngqiprngim.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngho 21244 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑃)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimf1 21241 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–1-1→(𝐶 × 𝐼)) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimfo 21242 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐶 × 𝐼)) |
| 16 | df-f1o 6495 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→(𝐶 × 𝐼) ↔ (𝐹:𝐵–1-1→(𝐶 × 𝐼) ∧ 𝐹:𝐵–onto→(𝐶 × 𝐼))) | |
| 17 | 14, 15, 16 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→(𝐶 × 𝐼)) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | rngqipbas 21236 | . . . 4 ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
| 19 | 18 | f1oeq3d 6767 | . . 3 ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→(Base‘𝑃) ↔ 𝐹:𝐵–1-1-onto→(𝐶 × 𝐼))) |
| 20 | 17, 19 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→(Base‘𝑃)) |
| 21 | 11 | ovexi 7388 | . . 3 ⊢ 𝑃 ∈ V |
| 22 | eqid 2733 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 23 | 5, 22 | isrngim2 20375 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑃 ∈ V) → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵–1-1-onto→(Base‘𝑃)))) |
| 24 | 1, 21, 23 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵–1-1-onto→(Base‘𝑃)))) |
| 25 | 13, 20, 24 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 ↦ cmpt 5176 × cxp 5619 –1-1→wf1 6485 –onto→wfo 6486 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 [cec 8628 Basecbs 17124 ↾s cress 17145 .rcmulr 17166 /s cqus 17413 ×s cxps 17414 ~QG cqg 19039 Rngcrng 20074 1rcur 20103 Ringcrg 20155 RngHom crnghm 20356 RngIso crngim 20357 2Idealc2idl 21190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-ec 8632 df-qs 8636 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-prds 17355 df-imas 17416 df-qus 17417 df-xps 17418 df-mgm 18552 df-mgmhm 18604 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-nsg 19041 df-eqg 19042 df-ghm 19129 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-rnghm 20358 df-rngim 20359 df-subrng 20465 df-lss 20869 df-sra 21111 df-rgmod 21112 df-lidl 21149 df-2idl 21191 |
| This theorem is referenced by: rngringbdlem2 21248 rngqiprngu 21259 |
| Copyright terms: Public domain | W3C validator |