MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngim Structured version   Visualization version   GIF version

Theorem rngqiprngim 21214
Description: 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngim (𝜑𝐹 ∈ (𝑅 RngIso 𝑃))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngim
StepHypRef Expression
1 rng2idlring.r . . 3 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . 3 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . 3 (𝜑𝐽 ∈ Ring)
5 rng2idlring.b . . 3 𝐵 = (Base‘𝑅)
6 rng2idlring.t . . 3 · = (.r𝑅)
7 rng2idlring.1 . . 3 1 = (1r𝐽)
8 rngqiprngim.g . . 3 = (𝑅 ~QG 𝐼)
9 rngqiprngim.q . . 3 𝑄 = (𝑅 /s )
10 rngqiprngim.c . . 3 𝐶 = (Base‘𝑄)
11 rngqiprngim.p . . 3 𝑃 = (𝑄 ×s 𝐽)
12 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngho 21213 . 2 (𝜑𝐹 ∈ (𝑅 RngHom 𝑃))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngimf1 21210 . . . 4 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngimfo 21211 . . . 4 (𝜑𝐹:𝐵onto→(𝐶 × 𝐼))
16 df-f1o 6518 . . . 4 (𝐹:𝐵1-1-onto→(𝐶 × 𝐼) ↔ (𝐹:𝐵1-1→(𝐶 × 𝐼) ∧ 𝐹:𝐵onto→(𝐶 × 𝐼)))
1714, 15, 16sylanbrc 583 . . 3 (𝜑𝐹:𝐵1-1-onto→(𝐶 × 𝐼))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11rngqipbas 21205 . . . 4 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
1918f1oeq3d 6797 . . 3 (𝜑 → (𝐹:𝐵1-1-onto→(Base‘𝑃) ↔ 𝐹:𝐵1-1-onto→(𝐶 × 𝐼)))
2017, 19mpbird 257 . 2 (𝜑𝐹:𝐵1-1-onto→(Base‘𝑃))
2111ovexi 7421 . . 3 𝑃 ∈ V
22 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
235, 22isrngim2 20362 . . 3 ((𝑅 ∈ Rng ∧ 𝑃 ∈ V) → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵1-1-onto→(Base‘𝑃))))
241, 21, 23sylancl 586 . 2 (𝜑 → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵1-1-onto→(Base‘𝑃))))
2513, 20, 24mpbir2and 713 1 (𝜑𝐹 ∈ (𝑅 RngIso 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cmpt 5188   × cxp 5636  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  [cec 8669  Basecbs 17179  s cress 17200  .rcmulr 17221   /s cqus 17468   ×s cxps 17469   ~QG cqg 19054  Rngcrng 20061  1rcur 20090  Ringcrg 20142   RngHom crnghm 20343   RngIso crngim 20344  2Idealc2idl 21159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-imas 17471  df-qus 17472  df-xps 17473  df-mgm 18567  df-mgmhm 18619  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rnghm 20345  df-rngim 20346  df-subrng 20455  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-2idl 21160
This theorem is referenced by:  rngringbdlem2  21217  rngqiprngu  21228
  Copyright terms: Public domain W3C validator