![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngqiprngim | Structured version Visualization version GIF version |
Description: πΉ is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
rngqiprngim.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngim.q | β’ π = (π /s βΌ ) |
rngqiprngim.c | β’ πΆ = (Baseβπ) |
rngqiprngim.p | β’ π = (π Γs π½) |
rngqiprngim.f | β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
Ref | Expression |
---|---|
rngqiprngim | β’ (π β πΉ β (π RngIsom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | . . 3 β’ (π β π β Rng) | |
2 | rng2idlring.i | . . 3 β’ (π β πΌ β (2Idealβπ )) | |
3 | rng2idlring.j | . . 3 β’ π½ = (π βΎs πΌ) | |
4 | rng2idlring.u | . . 3 β’ (π β π½ β Ring) | |
5 | rng2idlring.b | . . 3 β’ π΅ = (Baseβπ ) | |
6 | rng2idlring.t | . . 3 β’ Β· = (.rβπ ) | |
7 | rng2idlring.1 | . . 3 β’ 1 = (1rβπ½) | |
8 | rngqiprngim.g | . . 3 β’ βΌ = (π ~QG πΌ) | |
9 | rngqiprngim.q | . . 3 β’ π = (π /s βΌ ) | |
10 | rngqiprngim.c | . . 3 β’ πΆ = (Baseβπ) | |
11 | rngqiprngim.p | . . 3 β’ π = (π Γs π½) | |
12 | rngqiprngim.f | . . 3 β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngho 46778 | . 2 β’ (π β πΉ β (π RngHomo π)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimf1 46775 | . . . 4 β’ (π β πΉ:π΅β1-1β(πΆ Γ πΌ)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimfo 46776 | . . . 4 β’ (π β πΉ:π΅βontoβ(πΆ Γ πΌ)) |
16 | df-f1o 6550 | . . . 4 β’ (πΉ:π΅β1-1-ontoβ(πΆ Γ πΌ) β (πΉ:π΅β1-1β(πΆ Γ πΌ) β§ πΉ:π΅βontoβ(πΆ Γ πΌ))) | |
17 | 14, 15, 16 | sylanbrc 583 | . . 3 β’ (π β πΉ:π΅β1-1-ontoβ(πΆ Γ πΌ)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | rngqipbas 46770 | . . . 4 β’ (π β (Baseβπ) = (πΆ Γ πΌ)) |
19 | 18 | f1oeq3d 6830 | . . 3 β’ (π β (πΉ:π΅β1-1-ontoβ(Baseβπ) β πΉ:π΅β1-1-ontoβ(πΆ Γ πΌ))) |
20 | 17, 19 | mpbird 256 | . 2 β’ (π β πΉ:π΅β1-1-ontoβ(Baseβπ)) |
21 | 11 | ovexi 7442 | . . 3 β’ π β V |
22 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
23 | 5, 22 | isrngim 46692 | . . 3 β’ ((π β Rng β§ π β V) β (πΉ β (π RngIsom π) β (πΉ β (π RngHomo π) β§ πΉ:π΅β1-1-ontoβ(Baseβπ)))) |
24 | 1, 21, 23 | sylancl 586 | . 2 β’ (π β (πΉ β (π RngIsom π) β (πΉ β (π RngHomo π) β§ πΉ:π΅β1-1-ontoβ(Baseβπ)))) |
25 | 13, 20, 24 | mpbir2and 711 | 1 β’ (π β πΉ β (π RngIsom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 β¦ cmpt 5231 Γ cxp 5674 β1-1βwf1 6540 βontoβwfo 6541 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7408 [cec 8700 Basecbs 17143 βΎs cress 17172 .rcmulr 17197 /s cqus 17450 Γs cxps 17451 ~QG cqg 19001 1rcur 20003 Ringcrg 20055 2Idealc2idl 20855 Rngcrng 46638 RngHomo crngh 46673 RngIsom crngs 46674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-imas 17453 df-qus 17454 df-xps 17455 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19089 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-lss 20542 df-sra 20784 df-rgmod 20785 df-lidl 20786 df-2idl 20856 df-mgmhm 46539 df-rng 46639 df-rnghomo 46675 df-rngisom 46676 df-subrng 46715 |
This theorem is referenced by: rngringbdlem2 46782 rngqiprngu 46793 |
Copyright terms: Public domain | W3C validator |