![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngim | Structured version Visualization version GIF version |
Description: 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
rng2idlring.t | ⊢ · = (.r‘𝑅) |
rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
Ref | Expression |
---|---|
rngqiprngim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
2 | rng2idlring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
3 | rng2idlring.j | . . 3 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
4 | rng2idlring.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
5 | rng2idlring.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
6 | rng2idlring.t | . . 3 ⊢ · = (.r‘𝑅) | |
7 | rng2idlring.1 | . . 3 ⊢ 1 = (1r‘𝐽) | |
8 | rngqiprngim.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
9 | rngqiprngim.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
10 | rngqiprngim.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
11 | rngqiprngim.p | . . 3 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
12 | rngqiprngim.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngho 21210 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑃)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimf1 21207 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–1-1→(𝐶 × 𝐼)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimfo 21208 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐶 × 𝐼)) |
16 | df-f1o 6556 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→(𝐶 × 𝐼) ↔ (𝐹:𝐵–1-1→(𝐶 × 𝐼) ∧ 𝐹:𝐵–onto→(𝐶 × 𝐼))) | |
17 | 14, 15, 16 | sylanbrc 581 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→(𝐶 × 𝐼)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | rngqipbas 21202 | . . . 4 ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
19 | 18 | f1oeq3d 6835 | . . 3 ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→(Base‘𝑃) ↔ 𝐹:𝐵–1-1-onto→(𝐶 × 𝐼))) |
20 | 17, 19 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→(Base‘𝑃)) |
21 | 11 | ovexi 7453 | . . 3 ⊢ 𝑃 ∈ V |
22 | eqid 2725 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
23 | 5, 22 | isrngim2 20404 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑃 ∈ V) → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵–1-1-onto→(Base‘𝑃)))) |
24 | 1, 21, 23 | sylancl 584 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵–1-1-onto→(Base‘𝑃)))) |
25 | 13, 20, 24 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 〈cop 4636 ↦ cmpt 5232 × cxp 5676 –1-1→wf1 6546 –onto→wfo 6547 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 [cec 8723 Basecbs 17183 ↾s cress 17212 .rcmulr 17237 /s cqus 17490 ×s cxps 17491 ~QG cqg 19085 Rngcrng 20104 1rcur 20133 Ringcrg 20185 RngHom crnghm 20385 RngIso crngim 20386 2Idealc2idl 21156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-prds 17432 df-imas 17493 df-qus 17494 df-xps 17495 df-mgm 18603 df-mgmhm 18655 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-nsg 19087 df-eqg 19088 df-ghm 19176 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-rnghm 20387 df-rngim 20388 df-subrng 20495 df-lss 20828 df-sra 21070 df-rgmod 21071 df-lidl 21116 df-2idl 21157 |
This theorem is referenced by: rngringbdlem2 21214 rngqiprngu 21225 |
Copyright terms: Public domain | W3C validator |