Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatrngiso | Structured version Visualization version GIF version |
Description: There is a ring isomorphism from a ring to the ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019.) |
Ref | Expression |
---|---|
scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
scmatghm.s | ⊢ 𝑆 = (𝐴 ↾s 𝐶) |
Ref | Expression |
---|---|
scmatrngiso | ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatrhmval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatrhmval.o | . . . 4 ⊢ 1 = (1r‘𝐴) | |
4 | scmatrhmval.t | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
5 | scmatrhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
6 | scmatrhmval.c | . . . 4 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
7 | scmatghm.s | . . . 4 ⊢ 𝑆 = (𝐴 ↾s 𝐶) | |
8 | 1, 2, 3, 4, 5, 6, 7 | scmatrhm 21298 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
9 | 8 | 3adant2 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
10 | 1, 2, 3, 4, 5, 6 | scmatf1o 21295 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1-onto→𝐶) |
11 | 2, 6, 7 | scmatstrbas 21289 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶) |
12 | 11 | 3adant2 1132 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶) |
13 | 12 | f1oeq3d 6627 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝐹:𝐾–1-1-onto→(Base‘𝑆) ↔ 𝐹:𝐾–1-1-onto→𝐶)) |
14 | 10, 13 | mpbird 260 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1-onto→(Base‘𝑆)) |
15 | simp3 1139 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
16 | eqid 2739 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
17 | eqid 2739 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
18 | 2, 16, 1, 17, 6 | scmatsrng 21283 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴)) |
19 | 7 | subrgring 19669 | . . . 4 ⊢ (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring) |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ Ring) |
21 | eqid 2739 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
22 | 1, 21 | isrim 19619 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐾–1-1-onto→(Base‘𝑆)))) |
23 | 15, 20, 22 | 3imp3i2an 1346 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐾–1-1-onto→(Base‘𝑆)))) |
24 | 9, 14, 23 | mpbir2and 713 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∅c0 4221 ↦ cmpt 5120 –1-1-onto→wf1o 6348 ‘cfv 6349 (class class class)co 7182 Fincfn 8567 Basecbs 16598 ↾s cress 16599 ·𝑠 cvsca 16684 0gc0g 16828 1rcur 19382 Ringcrg 19428 RingHom crh 19598 RingIso crs 19599 SubRingcsubrg 19662 Mat cmat 21170 ScMat cscmat 21252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-ot 4535 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-isom 6358 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-of 7437 df-om 7612 df-1st 7726 df-2nd 7727 df-supp 7869 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-er 8332 df-map 8451 df-ixp 8520 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-fsupp 8919 df-sup 8991 df-oi 9059 df-card 9453 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 df-n0 11989 df-z 12075 df-dec 12192 df-uz 12337 df-fz 12994 df-fzo 13137 df-seq 13473 df-hash 13795 df-struct 16600 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-mulr 16694 df-sca 16696 df-vsca 16697 df-ip 16698 df-tset 16699 df-ple 16700 df-ds 16702 df-hom 16704 df-cco 16705 df-0g 16830 df-gsum 16831 df-prds 16836 df-pws 16838 df-mre 16972 df-mrc 16973 df-acs 16975 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-mhm 18084 df-submnd 18085 df-grp 18234 df-minusg 18235 df-sbg 18236 df-mulg 18355 df-subg 18406 df-ghm 18486 df-cntz 18577 df-cmn 19038 df-abl 19039 df-mgp 19371 df-ur 19383 df-ring 19430 df-rnghom 19601 df-rngiso 19602 df-subrg 19664 df-lmod 19767 df-lss 19835 df-sra 20075 df-rgmod 20076 df-dsmm 20560 df-frlm 20575 df-mamu 21149 df-mat 21171 df-dmat 21253 df-scmat 21254 |
This theorem is referenced by: scmatric 21300 |
Copyright terms: Public domain | W3C validator |