![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasf1omet | Structured version Visualization version GIF version |
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
imasf1oxmet.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1oxmet.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1oxmet.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1oxmet.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1oxmet.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1oxmet.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1omet.m | ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) |
Ref | Expression |
---|---|
imasf1omet | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1oxmet.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasf1oxmet.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasf1oxmet.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasf1oxmet.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasf1oxmet.e | . . 3 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
6 | imasf1oxmet.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasf1omet.m | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) | |
8 | metxmet 24365 | . . . 4 ⊢ (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
10 | 1, 2, 3, 4, 5, 6, 9 | imasf1oxmet 24406 | . 2 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
11 | f1ofo 6869 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
13 | eqid 2740 | . . . 4 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
14 | 1, 2, 12, 4, 13, 6 | imasdsfn 17574 | . . 3 ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
15 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑈 = (𝐹 “s 𝑅)) |
16 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
17 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐹:𝑉–1-1-onto→𝐵) |
18 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑅 ∈ 𝑍) |
19 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐸 ∈ (∞Met‘𝑉)) |
20 | simprl 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
21 | simprr 772 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
22 | 15, 16, 17, 18, 5, 6, 19, 20, 21 | imasdsf1o 24405 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = (𝑎𝐸𝑏)) |
23 | metcl 24363 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎𝐸𝑏) ∈ ℝ) | |
24 | 23 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
25 | 7, 24 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
26 | 22, 25 | eqeltrd 2844 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
27 | 26 | ralrimivva 3208 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
28 | f1ofn 6863 | . . . . . . . . 9 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) | |
29 | 3, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
30 | oveq2 7456 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎)𝐷𝑦) = ((𝐹‘𝑎)𝐷(𝐹‘𝑏))) | |
31 | 30 | eleq1d 2829 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
32 | 31 | ralrn 7122 | . . . . . . . 8 ⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
33 | 29, 32 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
34 | forn 6837 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
35 | 12, 34 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
36 | 35 | raleqdv 3334 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
37 | 33, 36 | bitr3d 281 | . . . . . 6 ⊢ (𝜑 → (∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
38 | 37 | ralbidv 3184 | . . . . 5 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
39 | 27, 38 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ) |
40 | oveq1 7455 | . . . . . . . . 9 ⊢ (𝑥 = (𝐹‘𝑎) → (𝑥𝐷𝑦) = ((𝐹‘𝑎)𝐷𝑦)) | |
41 | 40 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
42 | 41 | ralbidv 3184 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
43 | 42 | ralrn 7122 | . . . . . 6 ⊢ (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
44 | 29, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
45 | 35 | raleqdv 3334 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
46 | 44, 45 | bitr3d 281 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
47 | 39, 46 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ) |
48 | ffnov 7576 | . . 3 ⊢ (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) | |
49 | 14, 47, 48 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶ℝ) |
50 | ismet2 24364 | . 2 ⊢ (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ)) | |
51 | 10, 49, 50 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 × cxp 5698 ran crn 5701 ↾ cres 5702 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 Basecbs 17258 distcds 17320 “s cimas 17564 ∞Metcxmet 21372 Metcmet 21373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-gsum 17502 df-xrs 17562 df-imas 17568 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-xmet 21380 df-met 21381 |
This theorem is referenced by: xpsmet 24413 imasf1oms 24524 |
Copyright terms: Public domain | W3C validator |