MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1omet Structured version   Visualization version   GIF version

Theorem imasf1omet 23274
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1omet.m (𝜑𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
imasf1omet (𝜑𝐷 ∈ (Met‘𝐵))

Proof of Theorem imasf1omet
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . 3 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oxmet.r . . 3 (𝜑𝑅𝑍)
5 imasf1oxmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 imasf1oxmet.d . . 3 𝐷 = (dist‘𝑈)
7 imasf1omet.m . . . 4 (𝜑𝐸 ∈ (Met‘𝑉))
8 metxmet 23232 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
97, 8syl 17 . . 3 (𝜑𝐸 ∈ (∞Met‘𝑉))
101, 2, 3, 4, 5, 6, 9imasf1oxmet 23273 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
11 f1ofo 6668 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
123, 11syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 eqid 2737 . . . 4 (dist‘𝑅) = (dist‘𝑅)
141, 2, 12, 4, 13, 6imasdsfn 17019 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
151adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
162adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
173adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
184adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
199adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
20 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
21 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
2215, 16, 17, 18, 5, 6, 19, 20, 21imasdsf1o 23272 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
23 metcl 23230 . . . . . . . . 9 ((𝐸 ∈ (Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ)
24233expb 1122 . . . . . . . 8 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ)
257, 24sylan 583 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ)
2622, 25eqeltrd 2838 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ)
2726ralrimivva 3112 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ)
28 f1ofn 6662 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
293, 28syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
30 oveq2 7221 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
3130eleq1d 2822 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ))
3231ralrn 6907 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ))
3329, 32syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ))
34 forn 6636 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
3512, 34syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3635raleqdv 3325 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
3733, 36bitr3d 284 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
3837ralbidv 3118 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
3927, 38mpbid 235 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ)
40 oveq1 7220 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
4140eleq1d 2822 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4241ralbidv 3118 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4342ralrn 6907 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4429, 43syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4535raleqdv 3325 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ))
4644, 45bitr3d 284 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ))
4739, 46mpbid 235 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ)
48 ffnov 7337 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ))
4914, 47, 48sylanbrc 586 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
50 ismet2 23231 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
5110, 49, 50sylanbrc 586 1 (𝜑𝐷 ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061   × cxp 5549  ran crn 5552  cres 5553   Fn wfn 6375  wf 6376  ontowfo 6378  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  cr 10728  Basecbs 16760  distcds 16811  s cimas 17009  ∞Metcxmet 20348  Metcmet 20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-0g 16946  df-gsum 16947  df-xrs 17007  df-imas 17013  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-xmet 20356  df-met 20357
This theorem is referenced by:  xpsmet  23280  imasf1oms  23388
  Copyright terms: Public domain W3C validator