![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasf1omet | Structured version Visualization version GIF version |
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
imasf1oxmet.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1oxmet.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1oxmet.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1oxmet.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1oxmet.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1oxmet.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1omet.m | ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) |
Ref | Expression |
---|---|
imasf1omet | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1oxmet.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasf1oxmet.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasf1oxmet.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasf1oxmet.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasf1oxmet.e | . . 3 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
6 | imasf1oxmet.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasf1omet.m | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) | |
8 | metxmet 23769 | . . . 4 ⊢ (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
10 | 1, 2, 3, 4, 5, 6, 9 | imasf1oxmet 23810 | . 2 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
11 | f1ofo 6827 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
13 | eqid 2731 | . . . 4 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
14 | 1, 2, 12, 4, 13, 6 | imasdsfn 17442 | . . 3 ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
15 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑈 = (𝐹 “s 𝑅)) |
16 | 2 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
17 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐹:𝑉–1-1-onto→𝐵) |
18 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑅 ∈ 𝑍) |
19 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐸 ∈ (∞Met‘𝑉)) |
20 | simprl 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
21 | simprr 771 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
22 | 15, 16, 17, 18, 5, 6, 19, 20, 21 | imasdsf1o 23809 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = (𝑎𝐸𝑏)) |
23 | metcl 23767 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎𝐸𝑏) ∈ ℝ) | |
24 | 23 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
25 | 7, 24 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
26 | 22, 25 | eqeltrd 2832 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
27 | 26 | ralrimivva 3199 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
28 | f1ofn 6821 | . . . . . . . . 9 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) | |
29 | 3, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
30 | oveq2 7401 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎)𝐷𝑦) = ((𝐹‘𝑎)𝐷(𝐹‘𝑏))) | |
31 | 30 | eleq1d 2817 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
32 | 31 | ralrn 7074 | . . . . . . . 8 ⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
33 | 29, 32 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
34 | forn 6795 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
35 | 12, 34 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
36 | 35 | raleqdv 3324 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
37 | 33, 36 | bitr3d 280 | . . . . . 6 ⊢ (𝜑 → (∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
38 | 37 | ralbidv 3176 | . . . . 5 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
39 | 27, 38 | mpbid 231 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ) |
40 | oveq1 7400 | . . . . . . . . 9 ⊢ (𝑥 = (𝐹‘𝑎) → (𝑥𝐷𝑦) = ((𝐹‘𝑎)𝐷𝑦)) | |
41 | 40 | eleq1d 2817 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
42 | 41 | ralbidv 3176 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
43 | 42 | ralrn 7074 | . . . . . 6 ⊢ (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
44 | 29, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
45 | 35 | raleqdv 3324 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
46 | 44, 45 | bitr3d 280 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
47 | 39, 46 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ) |
48 | ffnov 7519 | . . 3 ⊢ (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) | |
49 | 14, 47, 48 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶ℝ) |
50 | ismet2 23768 | . 2 ⊢ (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ)) | |
51 | 10, 49, 50 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 × cxp 5667 ran crn 5670 ↾ cres 5671 Fn wfn 6527 ⟶wf 6528 –onto→wfo 6530 –1-1-onto→wf1o 6531 ‘cfv 6532 (class class class)co 7393 ℝcr 11091 Basecbs 17126 distcds 17188 “s cimas 17432 ∞Metcxmet 20863 Metcmet 20864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-sup 9419 df-inf 9420 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-0g 17369 df-gsum 17370 df-xrs 17430 df-imas 17436 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-mulg 18923 df-cntz 19147 df-cmn 19614 df-xmet 20871 df-met 20872 |
This theorem is referenced by: xpsmet 23817 imasf1oms 23928 |
Copyright terms: Public domain | W3C validator |