![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasf1omet | Structured version Visualization version GIF version |
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
imasf1oxmet.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1oxmet.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1oxmet.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1oxmet.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1oxmet.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1oxmet.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1omet.m | ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) |
Ref | Expression |
---|---|
imasf1omet | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1oxmet.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasf1oxmet.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasf1oxmet.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasf1oxmet.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasf1oxmet.e | . . 3 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
6 | imasf1oxmet.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasf1omet.m | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) | |
8 | metxmet 23687 | . . . 4 ⊢ (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
10 | 1, 2, 3, 4, 5, 6, 9 | imasf1oxmet 23728 | . 2 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
11 | f1ofo 6791 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
13 | eqid 2736 | . . . 4 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
14 | 1, 2, 12, 4, 13, 6 | imasdsfn 17396 | . . 3 ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
15 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑈 = (𝐹 “s 𝑅)) |
16 | 2 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
17 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐹:𝑉–1-1-onto→𝐵) |
18 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑅 ∈ 𝑍) |
19 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐸 ∈ (∞Met‘𝑉)) |
20 | simprl 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
21 | simprr 771 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
22 | 15, 16, 17, 18, 5, 6, 19, 20, 21 | imasdsf1o 23727 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = (𝑎𝐸𝑏)) |
23 | metcl 23685 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎𝐸𝑏) ∈ ℝ) | |
24 | 23 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
25 | 7, 24 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
26 | 22, 25 | eqeltrd 2838 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
27 | 26 | ralrimivva 3197 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
28 | f1ofn 6785 | . . . . . . . . 9 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) | |
29 | 3, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
30 | oveq2 7365 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎)𝐷𝑦) = ((𝐹‘𝑎)𝐷(𝐹‘𝑏))) | |
31 | 30 | eleq1d 2822 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
32 | 31 | ralrn 7038 | . . . . . . . 8 ⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
33 | 29, 32 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
34 | forn 6759 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
35 | 12, 34 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
36 | 35 | raleqdv 3313 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
37 | 33, 36 | bitr3d 280 | . . . . . 6 ⊢ (𝜑 → (∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
38 | 37 | ralbidv 3174 | . . . . 5 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
39 | 27, 38 | mpbid 231 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ) |
40 | oveq1 7364 | . . . . . . . . 9 ⊢ (𝑥 = (𝐹‘𝑎) → (𝑥𝐷𝑦) = ((𝐹‘𝑎)𝐷𝑦)) | |
41 | 40 | eleq1d 2822 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
42 | 41 | ralbidv 3174 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
43 | 42 | ralrn 7038 | . . . . . 6 ⊢ (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
44 | 29, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
45 | 35 | raleqdv 3313 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
46 | 44, 45 | bitr3d 280 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
47 | 39, 46 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ) |
48 | ffnov 7483 | . . 3 ⊢ (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) | |
49 | 14, 47, 48 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶ℝ) |
50 | ismet2 23686 | . 2 ⊢ (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ)) | |
51 | 10, 49, 50 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 × cxp 5631 ran crn 5634 ↾ cres 5635 Fn wfn 6491 ⟶wf 6492 –onto→wfo 6494 –1-1-onto→wf1o 6495 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 Basecbs 17083 distcds 17142 “s cimas 17386 ∞Metcxmet 20781 Metcmet 20782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-0g 17323 df-gsum 17324 df-xrs 17384 df-imas 17390 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-xmet 20789 df-met 20790 |
This theorem is referenced by: xpsmet 23735 imasf1oms 23846 |
Copyright terms: Public domain | W3C validator |