MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1omet Structured version   Visualization version   GIF version

Theorem imasf1omet 23811
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1omet.m (𝜑𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
imasf1omet (𝜑𝐷 ∈ (Met‘𝐵))

Proof of Theorem imasf1omet
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . 3 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oxmet.r . . 3 (𝜑𝑅𝑍)
5 imasf1oxmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 imasf1oxmet.d . . 3 𝐷 = (dist‘𝑈)
7 imasf1omet.m . . . 4 (𝜑𝐸 ∈ (Met‘𝑉))
8 metxmet 23769 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
97, 8syl 17 . . 3 (𝜑𝐸 ∈ (∞Met‘𝑉))
101, 2, 3, 4, 5, 6, 9imasf1oxmet 23810 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
11 f1ofo 6827 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
123, 11syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 eqid 2731 . . . 4 (dist‘𝑅) = (dist‘𝑅)
141, 2, 12, 4, 13, 6imasdsfn 17442 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
151adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
162adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
173adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
184adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
199adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
20 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
21 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
2215, 16, 17, 18, 5, 6, 19, 20, 21imasdsf1o 23809 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
23 metcl 23767 . . . . . . . . 9 ((𝐸 ∈ (Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ)
24233expb 1120 . . . . . . . 8 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ)
257, 24sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ)
2622, 25eqeltrd 2832 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ)
2726ralrimivva 3199 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ)
28 f1ofn 6821 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
293, 28syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
30 oveq2 7401 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
3130eleq1d 2817 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ))
3231ralrn 7074 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ))
3329, 32syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ))
34 forn 6795 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
3512, 34syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3635raleqdv 3324 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
3733, 36bitr3d 280 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
3837ralbidv 3176 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
3927, 38mpbid 231 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ)
40 oveq1 7400 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
4140eleq1d 2817 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4241ralbidv 3176 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4342ralrn 7074 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4429, 43syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ))
4535raleqdv 3324 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ))
4644, 45bitr3d 280 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ))
4739, 46mpbid 231 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ)
48 ffnov 7519 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ))
4914, 47, 48sylanbrc 583 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
50 ismet2 23768 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
5110, 49, 50sylanbrc 583 1 (𝜑𝐷 ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060   × cxp 5667  ran crn 5670  cres 5671   Fn wfn 6527  wf 6528  ontowfo 6530  1-1-ontowf1o 6531  cfv 6532  (class class class)co 7393  cr 11091  Basecbs 17126  distcds 17188  s cimas 17432  ∞Metcxmet 20863  Metcmet 20864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-fz 13467  df-fzo 13610  df-seq 13949  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-0g 17369  df-gsum 17370  df-xrs 17430  df-imas 17436  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-xmet 20871  df-met 20872
This theorem is referenced by:  xpsmet  23817  imasf1oms  23928
  Copyright terms: Public domain W3C validator