Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulnzcnopr | Structured version Visualization version GIF version |
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.) |
Ref | Expression |
---|---|
mulnzcnopr | ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulf 10951 | . . . . 5 ⊢ · :(ℂ × ℂ)⟶ℂ | |
2 | ffnov 7401 | . . . . 5 ⊢ ( · :(ℂ × ℂ)⟶ℂ ↔ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ)) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ) |
4 | 3 | simpli 484 | . . 3 ⊢ · Fn (ℂ × ℂ) |
5 | difss 4066 | . . . 4 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
6 | xpss12 5604 | . . . 4 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) | |
7 | 5, 5, 6 | mp2an 689 | . . 3 ⊢ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ) |
8 | fnssres 6555 | . . 3 ⊢ (( · Fn (ℂ × ℂ) ∧ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) → ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))) | |
9 | 4, 7, 8 | mp2an 689 | . 2 ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) |
10 | ovres 7438 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (𝑥 · 𝑦)) | |
11 | eldifsn 4720 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
12 | eldifsn 4720 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
13 | mulcl 10955 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
14 | 13 | ad2ant2r 744 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ) |
15 | mulne0 11617 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
16 | 14, 15 | jca 512 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) |
17 | 11, 12, 16 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) |
18 | eldifsn 4720 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
19 | 17, 18 | sylibr 233 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
20 | 10, 19 | eqeltrd 2839 | . . 3 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})) |
21 | 20 | rgen2 3120 | . 2 ⊢ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}) |
22 | ffnov 7401 | . 2 ⊢ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}))) | |
23 | 9, 21, 22 | mpbir2an 708 | 1 ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 × cxp 5587 ↾ cres 5591 Fn wfn 6428 ⟶wf 6429 (class class class)co 7275 ℂcc 10869 0cc0 10871 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |