![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulnzcnopr | Structured version Visualization version GIF version |
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.) |
Ref | Expression |
---|---|
mulnzcnopr | ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulf 11131 | . . . . 5 ⊢ · :(ℂ × ℂ)⟶ℂ | |
2 | ffnov 7483 | . . . . 5 ⊢ ( · :(ℂ × ℂ)⟶ℂ ↔ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ)) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ) |
4 | 3 | simpli 484 | . . 3 ⊢ · Fn (ℂ × ℂ) |
5 | difss 4091 | . . . 4 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
6 | xpss12 5648 | . . . 4 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) | |
7 | 5, 5, 6 | mp2an 690 | . . 3 ⊢ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ) |
8 | fnssres 6624 | . . 3 ⊢ (( · Fn (ℂ × ℂ) ∧ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) → ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))) | |
9 | 4, 7, 8 | mp2an 690 | . 2 ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) |
10 | ovres 7520 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (𝑥 · 𝑦)) | |
11 | eldifsn 4747 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
12 | eldifsn 4747 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
13 | mulcl 11135 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
14 | 13 | ad2ant2r 745 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ) |
15 | mulne0 11797 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
16 | 14, 15 | jca 512 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) |
17 | 11, 12, 16 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) |
18 | eldifsn 4747 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
19 | 17, 18 | sylibr 233 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
20 | 10, 19 | eqeltrd 2838 | . . 3 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})) |
21 | 20 | rgen2 3194 | . 2 ⊢ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}) |
22 | ffnov 7483 | . 2 ⊢ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}))) | |
23 | 9, 21, 22 | mpbir2an 709 | 1 ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∖ cdif 3907 ⊆ wss 3910 {csn 4586 × cxp 5631 ↾ cres 5635 Fn wfn 6491 ⟶wf 6492 (class class class)co 7357 ℂcc 11049 0cc0 11051 · cmul 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |