MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Visualization version   GIF version

Theorem prdsmet 24401
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsmet.b 𝐵 = (Base‘𝑌)
prdsmet.v 𝑉 = (Base‘𝑅)
prdsmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsmet.d 𝐷 = (dist‘𝑌)
prdsmet.s (𝜑𝑆𝑊)
prdsmet.i (𝜑𝐼 ∈ Fin)
prdsmet.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsmet.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
prdsmet (𝜑𝐷 ∈ (Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsmet
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsmet.b . . 3 𝐵 = (Base‘𝑌)
3 prdsmet.v . . 3 𝑉 = (Base‘𝑅)
4 prdsmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
5 prdsmet.d . . 3 𝐷 = (dist‘𝑌)
6 prdsmet.s . . 3 (𝜑𝑆𝑊)
7 prdsmet.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsmet.r . . 3 ((𝜑𝑥𝐼) → 𝑅𝑍)
9 prdsmet.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
10 metxmet 24365 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
119, 10syl 17 . . 3 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 24400 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 24398 . . . 4 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
1413ffnd 6748 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
156adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
167adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
178ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
19 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
20 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
211, 2, 15, 16, 18, 19, 20, 3, 4, 5prdsdsval3 17545 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
221, 2, 15, 16, 18, 3, 19prdsbascl 17543 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
231, 2, 15, 16, 18, 3, 20prdsbascl 17543 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
24 r19.26 3117 . . . . . . . . . . 11 (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) ↔ (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉))
25 metcl 24363 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
26253expib 1122 . . . . . . . . . . . . . 14 (𝐸 ∈ (Met‘𝑉) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
279, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2827ralimdva 3173 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2928adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3024, 29biimtrrid 243 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3122, 23, 30mp2and 698 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
32 eqid 2740 . . . . . . . . . 10 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
3332fmpt 7144 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ↔ (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3431, 33sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3534frnd 6755 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
36 0red 11293 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
3736snssd 4834 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
3835, 37unssd 4215 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
39 xrltso 13203 . . . . . . . 8 < Or ℝ*
4039a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → < Or ℝ*)
41 mptfi 9421 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
42 rnfi 9408 . . . . . . . . 9 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
4316, 41, 423syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
44 snfi 9109 . . . . . . . 8 {0} ∈ Fin
45 unfi 9238 . . . . . . . 8 ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
4643, 44, 45sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
47 ssun2 4202 . . . . . . . . 9 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
48 c0ex 11284 . . . . . . . . . 10 0 ∈ V
4948snss 4810 . . . . . . . . 9 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5047, 49mpbir 231 . . . . . . . 8 0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
51 ne0i 4364 . . . . . . . 8 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
5250, 51mp1i 13 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
53 ressxr 11334 . . . . . . . 8 ℝ ⊆ ℝ*
5438, 53sstrdi 4021 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
55 fisupcl 9538 . . . . . . 7 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5640, 46, 52, 54, 55syl13anc 1372 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5738, 56sseldd 4009 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ ℝ)
5821, 57eqeltrd 2844 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ ℝ)
5958ralrimivva 3208 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ)
60 ffnov 7576 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ))
6114, 59, 60sylanbrc 582 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ismet2 24364 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
6312, 61, 62sylanbrc 582 1 (𝜑𝐷 ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cun 3974  wss 3976  c0 4352  {csn 4648  cmpt 5249   Or wor 5606   × cxp 5698  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  supcsup 9509  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  [,]cicc 13410  Basecbs 17258  distcds 17320  Xscprds 17505  ∞Metcxmet 21372  Metcmet 21373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-prds 17507  df-xmet 21380  df-met 21381
This theorem is referenced by:  xpsmet  24413  prdsmslem1  24561  prdsbnd  37753  prdstotbnd  37754  prdsbnd2  37755  repwsmet  37794
  Copyright terms: Public domain W3C validator