MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Visualization version   GIF version

Theorem prdsmet 24274
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsmet.b 𝐵 = (Base‘𝑌)
prdsmet.v 𝑉 = (Base‘𝑅)
prdsmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsmet.d 𝐷 = (dist‘𝑌)
prdsmet.s (𝜑𝑆𝑊)
prdsmet.i (𝜑𝐼 ∈ Fin)
prdsmet.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsmet.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
prdsmet (𝜑𝐷 ∈ (Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsmet
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsmet.b . . 3 𝐵 = (Base‘𝑌)
3 prdsmet.v . . 3 𝑉 = (Base‘𝑅)
4 prdsmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
5 prdsmet.d . . 3 𝐷 = (dist‘𝑌)
6 prdsmet.s . . 3 (𝜑𝑆𝑊)
7 prdsmet.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsmet.r . . 3 ((𝜑𝑥𝐼) → 𝑅𝑍)
9 prdsmet.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
10 metxmet 24238 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
119, 10syl 17 . . 3 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 24273 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 24271 . . . 4 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
1413ffnd 6657 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
156adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
167adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
178ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
19 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
20 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
211, 2, 15, 16, 18, 19, 20, 3, 4, 5prdsdsval3 17407 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
221, 2, 15, 16, 18, 3, 19prdsbascl 17405 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
231, 2, 15, 16, 18, 3, 20prdsbascl 17405 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
24 r19.26 3089 . . . . . . . . . . 11 (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) ↔ (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉))
25 metcl 24236 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
26253expib 1122 . . . . . . . . . . . . . 14 (𝐸 ∈ (Met‘𝑉) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
279, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2827ralimdva 3141 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2928adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3024, 29biimtrrid 243 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3122, 23, 30mp2and 699 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
32 eqid 2729 . . . . . . . . . 10 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
3332fmpt 7048 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ↔ (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3431, 33sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3534frnd 6664 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
36 0red 11137 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
3736snssd 4763 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
3835, 37unssd 4145 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
39 xrltso 13061 . . . . . . . 8 < Or ℝ*
4039a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → < Or ℝ*)
41 mptfi 9260 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
42 rnfi 9249 . . . . . . . . 9 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
4316, 41, 423syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
44 snfi 8975 . . . . . . . 8 {0} ∈ Fin
45 unfi 9095 . . . . . . . 8 ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
4643, 44, 45sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
47 ssun2 4132 . . . . . . . . 9 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
48 c0ex 11128 . . . . . . . . . 10 0 ∈ V
4948snss 4739 . . . . . . . . 9 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5047, 49mpbir 231 . . . . . . . 8 0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
51 ne0i 4294 . . . . . . . 8 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
5250, 51mp1i 13 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
53 ressxr 11178 . . . . . . . 8 ℝ ⊆ ℝ*
5438, 53sstrdi 3950 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
55 fisupcl 9379 . . . . . . 7 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5640, 46, 52, 54, 55syl13anc 1374 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5738, 56sseldd 3938 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ ℝ)
5821, 57eqeltrd 2828 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ ℝ)
5958ralrimivva 3172 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ)
60 ffnov 7479 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ))
6114, 59, 60sylanbrc 583 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ismet2 24237 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
6312, 61, 62sylanbrc 583 1 (𝜑𝐷 ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cun 3903  wss 3905  c0 4286  {csn 4579  cmpt 5176   Or wor 5530   × cxp 5621  ran crn 5624  cres 5625   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  supcsup 9349  cr 11027  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  [,]cicc 13269  Basecbs 17138  distcds 17188  Xscprds 17367  ∞Metcxmet 21264  Metcmet 21265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-prds 17369  df-xmet 21272  df-met 21273
This theorem is referenced by:  xpsmet  24286  prdsmslem1  24431  prdsbnd  37775  prdstotbnd  37776  prdsbnd2  37777  repwsmet  37816
  Copyright terms: Public domain W3C validator