MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Visualization version   GIF version

Theorem prdsmet 23431
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsmet.b 𝐵 = (Base‘𝑌)
prdsmet.v 𝑉 = (Base‘𝑅)
prdsmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsmet.d 𝐷 = (dist‘𝑌)
prdsmet.s (𝜑𝑆𝑊)
prdsmet.i (𝜑𝐼 ∈ Fin)
prdsmet.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsmet.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
prdsmet (𝜑𝐷 ∈ (Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsmet
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsmet.b . . 3 𝐵 = (Base‘𝑌)
3 prdsmet.v . . 3 𝑉 = (Base‘𝑅)
4 prdsmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
5 prdsmet.d . . 3 𝐷 = (dist‘𝑌)
6 prdsmet.s . . 3 (𝜑𝑆𝑊)
7 prdsmet.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsmet.r . . 3 ((𝜑𝑥𝐼) → 𝑅𝑍)
9 prdsmet.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
10 metxmet 23395 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
119, 10syl 17 . . 3 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 23430 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 23428 . . . 4 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
1413ffnd 6585 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
156adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
167adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
178ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
19 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
20 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
211, 2, 15, 16, 18, 19, 20, 3, 4, 5prdsdsval3 17113 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
221, 2, 15, 16, 18, 3, 19prdsbascl 17111 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
231, 2, 15, 16, 18, 3, 20prdsbascl 17111 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
24 r19.26 3094 . . . . . . . . . . 11 (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) ↔ (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉))
25 metcl 23393 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
26253expib 1120 . . . . . . . . . . . . . 14 (𝐸 ∈ (Met‘𝑉) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
279, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2827ralimdva 3102 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2928adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3024, 29syl5bir 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3122, 23, 30mp2and 695 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
32 eqid 2738 . . . . . . . . . 10 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
3332fmpt 6966 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ↔ (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3431, 33sylib 217 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3534frnd 6592 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
36 0red 10909 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
3736snssd 4739 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
3835, 37unssd 4116 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
39 xrltso 12804 . . . . . . . 8 < Or ℝ*
4039a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → < Or ℝ*)
41 mptfi 9048 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
42 rnfi 9032 . . . . . . . . 9 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
4316, 41, 423syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
44 snfi 8788 . . . . . . . 8 {0} ∈ Fin
45 unfi 8917 . . . . . . . 8 ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
4643, 44, 45sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
47 ssun2 4103 . . . . . . . . 9 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
48 c0ex 10900 . . . . . . . . . 10 0 ∈ V
4948snss 4716 . . . . . . . . 9 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5047, 49mpbir 230 . . . . . . . 8 0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
51 ne0i 4265 . . . . . . . 8 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
5250, 51mp1i 13 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
53 ressxr 10950 . . . . . . . 8 ℝ ⊆ ℝ*
5438, 53sstrdi 3929 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
55 fisupcl 9158 . . . . . . 7 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5640, 46, 52, 54, 55syl13anc 1370 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5738, 56sseldd 3918 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ ℝ)
5821, 57eqeltrd 2839 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ ℝ)
5958ralrimivva 3114 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ)
60 ffnov 7379 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ))
6114, 59, 60sylanbrc 582 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ismet2 23394 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
6312, 61, 62sylanbrc 582 1 (𝜑𝐷 ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  cun 3881  wss 3883  c0 4253  {csn 4558  cmpt 5153   Or wor 5493   × cxp 5578  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  [,]cicc 13011  Basecbs 16840  distcds 16897  Xscprds 17073  ∞Metcxmet 20495  Metcmet 20496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-prds 17075  df-xmet 20503  df-met 20504
This theorem is referenced by:  xpsmet  23443  prdsmslem1  23589  prdsbnd  35878  prdstotbnd  35879  prdsbnd2  35880  repwsmet  35919
  Copyright terms: Public domain W3C validator