![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finngch | Structured version Visualization version GIF version |
Description: The exclusion of finite sets from consideration in df-gch 10668 is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015.) |
Ref | Expression |
---|---|
finngch | ⊢ ((𝐴 ∈ Fin ∧ 1o ≺ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin12 10460 | . . . 4 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) | |
2 | fin23 10436 | . . . 4 ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) | |
3 | fin34 10437 | . . . 4 ⊢ (𝐴 ∈ FinIII → 𝐴 ∈ FinIV) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinIV) |
5 | isfin4p1 10362 | . . 3 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
6 | 4, 5 | sylib 218 | . 2 ⊢ (𝐴 ∈ Fin → 𝐴 ≺ (𝐴 ⊔ 1o)) |
7 | canthp1 10701 | . 2 ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | |
8 | 6, 7 | anim12i 613 | 1 ⊢ ((𝐴 ∈ Fin ∧ 1o ≺ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4608 class class class wbr 5151 1oc1o 8507 ≺ csdm 8992 Fincfn 8993 ⊔ cdju 9945 FinIIcfin2 10326 FinIVcfin4 10327 FinIIIcfin3 10328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-rpss 7749 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-seqom 8496 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-oi 9557 df-wdom 9612 df-dju 9948 df-card 9986 df-fin2 10333 df-fin4 10334 df-fin3 10335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |