MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finngch Structured version   Visualization version   GIF version

Theorem finngch 10608
Description: The exclusion of finite sets from consideration in df-gch 10574 is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015.)
Assertion
Ref Expression
finngch ((𝐴 ∈ Fin ∧ 1o𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴))

Proof of Theorem finngch
StepHypRef Expression
1 fin12 10366 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinII)
2 fin23 10342 . . . 4 (𝐴 ∈ FinII𝐴 ∈ FinIII)
3 fin34 10343 . . . 4 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
41, 2, 33syl 18 . . 3 (𝐴 ∈ Fin → 𝐴 ∈ FinIV)
5 isfin4p1 10268 . . 3 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
64, 5sylib 218 . 2 (𝐴 ∈ Fin → 𝐴 ≺ (𝐴 ⊔ 1o))
7 canthp1 10607 . 2 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
86, 7anim12i 613 1 ((𝐴 ∈ Fin ∧ 1o𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  𝒫 cpw 4563   class class class wbr 5107  1oc1o 8427  csdm 8917  Fincfn 8918  cdju 9851  FinIIcfin2 10232  FinIVcfin4 10233  FinIIIcfin3 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-wdom 9518  df-dju 9854  df-card 9892  df-fin2 10239  df-fin4 10240  df-fin3 10241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator