![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmfnfmlem1 | Structured version Visualization version GIF version |
Description: Lemma for fmfnfm 23991. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fmfnfm.b | ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
fmfnfm.l | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
fmfnfm.f | ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
fmfnfm.fm | ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
Ref | Expression |
---|---|
fmfnfmlem1 | ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmfnfm.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) | |
2 | fbssfi 23870 | . . . . 5 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) | |
3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) |
4 | sstr2 4005 | . . . . . 6 ⊢ ((𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝐹 “ 𝑤) ⊆ 𝑡)) | |
5 | imass2 6128 | . . . . . 6 ⊢ (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠)) | |
6 | 4, 5 | syl11 33 | . . . . 5 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ 𝑡)) |
7 | 6 | reximdv 3170 | . . . 4 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
8 | 3, 7 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
9 | fmfnfm.l | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) | |
10 | filtop 23888 | . . . . . . . 8 ⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐿) |
12 | fmfnfm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) | |
13 | elfm 23980 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) | |
14 | 11, 1, 12, 13 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) |
15 | fmfnfm.fm | . . . . . . 7 ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) | |
16 | 15 | sseld 3997 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡 ∈ 𝐿)) |
17 | 14, 16 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
18 | 17 | expcomd 416 | . . . 4 ⊢ (𝜑 → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
20 | 8, 19 | syld 47 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
21 | 20 | ex 412 | 1 ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3966 “ cima 5696 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ficfi 9457 fBascfbas 21379 Filcfil 23878 FilMap cfm 23966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1o 8514 df-2o 8515 df-en 8994 df-fin 8997 df-fi 9458 df-fbas 21388 df-fg 21389 df-fil 23879 df-fm 23971 |
This theorem is referenced by: fmfnfmlem4 23990 |
Copyright terms: Public domain | W3C validator |