![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmfnfmlem1 | Structured version Visualization version GIF version |
Description: Lemma for fmfnfm 23989. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fmfnfm.b | ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
fmfnfm.l | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
fmfnfm.f | ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
fmfnfm.fm | ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
Ref | Expression |
---|---|
fmfnfmlem1 | ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmfnfm.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) | |
2 | fbssfi 23868 | . . . . 5 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) |
4 | sstr2 4015 | . . . . . 6 ⊢ ((𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝐹 “ 𝑤) ⊆ 𝑡)) | |
5 | imass2 6134 | . . . . . 6 ⊢ (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠)) | |
6 | 4, 5 | syl11 33 | . . . . 5 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ 𝑡)) |
7 | 6 | reximdv 3176 | . . . 4 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
8 | 3, 7 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
9 | fmfnfm.l | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) | |
10 | filtop 23886 | . . . . . . . 8 ⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐿) |
12 | fmfnfm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) | |
13 | elfm 23978 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) | |
14 | 11, 1, 12, 13 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) |
15 | fmfnfm.fm | . . . . . . 7 ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) | |
16 | 15 | sseld 4007 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡 ∈ 𝐿)) |
17 | 14, 16 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
18 | 17 | expcomd 416 | . . . 4 ⊢ (𝜑 → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
20 | 8, 19 | syld 47 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
21 | 20 | ex 412 | 1 ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 “ cima 5703 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ficfi 9481 fBascfbas 21377 Filcfil 23876 FilMap cfm 23964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1o 8524 df-2o 8525 df-en 9006 df-fin 9009 df-fi 9482 df-fbas 21386 df-fg 21387 df-fil 23877 df-fm 23969 |
This theorem is referenced by: fmfnfmlem4 23988 |
Copyright terms: Public domain | W3C validator |