Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmfnfmlem1 | Structured version Visualization version GIF version |
Description: Lemma for fmfnfm 23017. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fmfnfm.b | ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
fmfnfm.l | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
fmfnfm.f | ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
fmfnfm.fm | ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
Ref | Expression |
---|---|
fmfnfmlem1 | ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmfnfm.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) | |
2 | fbssfi 22896 | . . . . 5 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) |
4 | sstr2 3924 | . . . . . 6 ⊢ ((𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝐹 “ 𝑤) ⊆ 𝑡)) | |
5 | imass2 5999 | . . . . . 6 ⊢ (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠)) | |
6 | 4, 5 | syl11 33 | . . . . 5 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ 𝑡)) |
7 | 6 | reximdv 3201 | . . . 4 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
8 | 3, 7 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
9 | fmfnfm.l | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) | |
10 | filtop 22914 | . . . . . . . 8 ⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐿) |
12 | fmfnfm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) | |
13 | elfm 23006 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) | |
14 | 11, 1, 12, 13 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) |
15 | fmfnfm.fm | . . . . . . 7 ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) | |
16 | 15 | sseld 3916 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡 ∈ 𝐿)) |
17 | 14, 16 | sylbird 259 | . . . . 5 ⊢ (𝜑 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
18 | 17 | expcomd 416 | . . . 4 ⊢ (𝜑 → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
20 | 8, 19 | syld 47 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
21 | 20 | ex 412 | 1 ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ficfi 9099 fBascfbas 20498 Filcfil 22904 FilMap cfm 22992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-fin 8695 df-fi 9100 df-fbas 20507 df-fg 20508 df-fil 22905 df-fm 22997 |
This theorem is referenced by: fmfnfmlem4 23016 |
Copyright terms: Public domain | W3C validator |