MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem1 Structured version   Visualization version   GIF version

Theorem fmfnfmlem1 22563
Description: Lemma for fmfnfm 22567. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem1 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Distinct variable groups:   𝑡,𝑠,𝐵   𝐹,𝑠,𝑡   𝐿,𝑠,𝑡   𝜑,𝑠,𝑡   𝑋,𝑠,𝑡   𝑌,𝑠,𝑡

Proof of Theorem fmfnfmlem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . 5 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbssfi 22446 . . . . 5 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤𝐵 𝑤𝑠)
31, 2sylan 583 . . . 4 ((𝜑𝑠 ∈ (fi‘𝐵)) → ∃𝑤𝐵 𝑤𝑠)
4 sstr2 3925 . . . . . 6 ((𝐹𝑤) ⊆ (𝐹𝑠) → ((𝐹𝑠) ⊆ 𝑡 → (𝐹𝑤) ⊆ 𝑡))
5 imass2 5936 . . . . . 6 (𝑤𝑠 → (𝐹𝑤) ⊆ (𝐹𝑠))
64, 5syl11 33 . . . . 5 ((𝐹𝑠) ⊆ 𝑡 → (𝑤𝑠 → (𝐹𝑤) ⊆ 𝑡))
76reximdv 3235 . . . 4 ((𝐹𝑠) ⊆ 𝑡 → (∃𝑤𝐵 𝑤𝑠 → ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡))
83, 7syl5com 31 . . 3 ((𝜑𝑠 ∈ (fi‘𝐵)) → ((𝐹𝑠) ⊆ 𝑡 → ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡))
9 fmfnfm.l . . . . . . . 8 (𝜑𝐿 ∈ (Fil‘𝑋))
10 filtop 22464 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
119, 10syl 17 . . . . . . 7 (𝜑𝑋𝐿)
12 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
13 elfm 22556 . . . . . . 7 ((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡𝑋 ∧ ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡)))
1411, 1, 12, 13syl3anc 1368 . . . . . 6 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡𝑋 ∧ ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡)))
15 fmfnfm.fm . . . . . . 7 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
1615sseld 3917 . . . . . 6 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡𝐿))
1714, 16sylbird 263 . . . . 5 (𝜑 → ((𝑡𝑋 ∧ ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡) → 𝑡𝐿))
1817expcomd 420 . . . 4 (𝜑 → (∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
1918adantr 484 . . 3 ((𝜑𝑠 ∈ (fi‘𝐵)) → (∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
208, 19syld 47 . 2 ((𝜑𝑠 ∈ (fi‘𝐵)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
2120ex 416 1 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2112  wrex 3110  wss 3884  cima 5526  wf 6324  cfv 6328  (class class class)co 7139  ficfi 8862  fBascfbas 20083  Filcfil 22454   FilMap cfm 22542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-fin 8500  df-fi 8863  df-fbas 20092  df-fg 20093  df-fil 22455  df-fm 22547
This theorem is referenced by:  fmfnfmlem4  22566
  Copyright terms: Public domain W3C validator