![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmfnfmlem1 | Structured version Visualization version GIF version |
Description: Lemma for fmfnfm 22170. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fmfnfm.b | ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
fmfnfm.l | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
fmfnfm.f | ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
fmfnfm.fm | ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
Ref | Expression |
---|---|
fmfnfmlem1 | ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmfnfm.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) | |
2 | fbssfi 22049 | . . . . 5 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) | |
3 | 1, 2 | sylan 575 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) |
4 | sstr2 3828 | . . . . . 6 ⊢ ((𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝐹 “ 𝑤) ⊆ 𝑡)) | |
5 | imass2 5755 | . . . . . 6 ⊢ (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠)) | |
6 | 4, 5 | syl11 33 | . . . . 5 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ 𝑡)) |
7 | 6 | reximdv 3197 | . . . 4 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
8 | 3, 7 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
9 | fmfnfm.l | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) | |
10 | filtop 22067 | . . . . . . . 8 ⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐿) |
12 | fmfnfm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) | |
13 | elfm 22159 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) | |
14 | 11, 1, 12, 13 | syl3anc 1439 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) |
15 | fmfnfm.fm | . . . . . . 7 ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) | |
16 | 15 | sseld 3820 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡 ∈ 𝐿)) |
17 | 14, 16 | sylbird 252 | . . . . 5 ⊢ (𝜑 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
18 | 17 | expcomd 408 | . . . 4 ⊢ (𝜑 → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
19 | 18 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
20 | 8, 19 | syld 47 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
21 | 20 | ex 403 | 1 ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2107 ∃wrex 3091 ⊆ wss 3792 “ cima 5358 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ficfi 8604 fBascfbas 20130 Filcfil 22057 FilMap cfm 22145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-fin 8245 df-fi 8605 df-fbas 20139 df-fg 20140 df-fil 22058 df-fm 22150 |
This theorem is referenced by: fmfnfmlem4 22169 |
Copyright terms: Public domain | W3C validator |