| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmfnfmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fmfnfm 23873. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmfnfm.b | ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
| fmfnfm.l | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
| fmfnfm.f | ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
| fmfnfm.fm | ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
| Ref | Expression |
|---|---|
| fmfnfmlem1 | ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) | |
| 2 | fbssfi 23752 | . . . . 5 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠) |
| 4 | sstr2 3936 | . . . . . 6 ⊢ ((𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝐹 “ 𝑤) ⊆ 𝑡)) | |
| 5 | imass2 6050 | . . . . . 6 ⊢ (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑠)) | |
| 6 | 4, 5 | syl11 33 | . . . . 5 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑤 ⊆ 𝑠 → (𝐹 “ 𝑤) ⊆ 𝑡)) |
| 7 | 6 | reximdv 3147 | . . . 4 ⊢ ((𝐹 “ 𝑠) ⊆ 𝑡 → (∃𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
| 8 | 3, 7 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡)) |
| 9 | fmfnfm.l | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) | |
| 10 | filtop 23770 | . . . . . . . 8 ⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐿) |
| 12 | fmfnfm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) | |
| 13 | elfm 23862 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) | |
| 14 | 11, 1, 12, 13 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡))) |
| 15 | fmfnfm.fm | . . . . . . 7 ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) | |
| 16 | 15 | sseld 3928 | . . . . . 6 ⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡 ∈ 𝐿)) |
| 17 | 14, 16 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
| 18 | 17 | expcomd 416 | . . . 4 ⊢ (𝜑 → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → (∃𝑤 ∈ 𝐵 (𝐹 “ 𝑤) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
| 20 | 8, 19 | syld 47 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (fi‘𝐵)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
| 21 | 20 | ex 412 | 1 ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ficfi 9294 fBascfbas 21279 Filcfil 23760 FilMap cfm 23848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-fin 8873 df-fi 9295 df-fbas 21288 df-fg 21289 df-fil 23761 df-fm 23853 |
| This theorem is referenced by: fmfnfmlem4 23872 |
| Copyright terms: Public domain | W3C validator |