![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjlem | Structured version Visualization version GIF version |
Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjlem | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . . . . 6 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | 1, 2 | dprdf2 19920 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
4 | 3 | ffnd 6719 | . . . 4 ⊢ (𝜑 → 𝑆 Fn 𝐼) |
5 | dpjlem.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
6 | fnressn 7159 | . . . 4 ⊢ ((𝑆 Fn 𝐼 ∧ 𝑋 ∈ 𝐼) → (𝑆 ↾ {𝑋}) = {⟨𝑋, (𝑆‘𝑋)⟩}) | |
7 | 4, 5, 6 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑆 ↾ {𝑋}) = {⟨𝑋, (𝑆‘𝑋)⟩}) |
8 | 7 | oveq2d 7429 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝐺 DProd {⟨𝑋, (𝑆‘𝑋)⟩})) |
9 | 3, 5 | ffvelcdmd 7088 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
10 | dprdsn 19949 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝑋, (𝑆‘𝑋)⟩} ∧ (𝐺 DProd {⟨𝑋, (𝑆‘𝑋)⟩}) = (𝑆‘𝑋))) | |
11 | 5, 9, 10 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐺dom DProd {⟨𝑋, (𝑆‘𝑋)⟩} ∧ (𝐺 DProd {⟨𝑋, (𝑆‘𝑋)⟩}) = (𝑆‘𝑋))) |
12 | 11 | simprd 494 | . 2 ⊢ (𝜑 → (𝐺 DProd {⟨𝑋, (𝑆‘𝑋)⟩}) = (𝑆‘𝑋)) |
13 | 8, 12 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {csn 4629 ⟨cop 4635 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 Fn wfn 6539 ‘cfv 6544 (class class class)co 7413 SubGrpcsubg 19038 DProd cdprd 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14297 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-0g 17393 df-gsum 17394 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18707 df-submnd 18708 df-grp 18860 df-minusg 18861 df-sbg 18862 df-mulg 18989 df-subg 19041 df-ghm 19130 df-gim 19175 df-cntz 19224 df-oppg 19253 df-cmn 19693 df-dprd 19908 |
This theorem is referenced by: dpjcntz 19965 dpjdisj 19966 dpjlsm 19967 ablfac1eulem 19985 ablfac1eu 19986 |
Copyright terms: Public domain | W3C validator |