| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjlem | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| dpjlem | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . . . 6 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | 1, 2 | dprdf2 19914 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 4 | 3 | ffnd 6648 | . . . 4 ⊢ (𝜑 → 𝑆 Fn 𝐼) |
| 5 | dpjlem.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 6 | fnressn 7086 | . . . 4 ⊢ ((𝑆 Fn 𝐼 ∧ 𝑋 ∈ 𝐼) → (𝑆 ↾ {𝑋}) = {〈𝑋, (𝑆‘𝑋)〉}) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 ↾ {𝑋}) = {〈𝑋, (𝑆‘𝑋)〉}) |
| 8 | 7 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉})) |
| 9 | 3, 5 | ffvelcdmd 7013 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
| 10 | dprdsn 19943 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈𝑋, (𝑆‘𝑋)〉} ∧ (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉}) = (𝑆‘𝑋))) | |
| 11 | 5, 9, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺dom DProd {〈𝑋, (𝑆‘𝑋)〉} ∧ (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉}) = (𝑆‘𝑋))) |
| 12 | 11 | simprd 495 | . 2 ⊢ (𝜑 → (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉}) = (𝑆‘𝑋)) |
| 13 | 8, 12 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {csn 4574 〈cop 4580 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Fn wfn 6472 ‘cfv 6477 (class class class)co 7341 SubGrpcsubg 19025 DProd cdprd 19900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-0g 17337 df-gsum 17338 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-gim 19164 df-cntz 19222 df-oppg 19251 df-cmn 19687 df-dprd 19902 |
| This theorem is referenced by: dpjcntz 19959 dpjdisj 19960 dpjlsm 19961 ablfac1eulem 19979 ablfac1eu 19980 |
| Copyright terms: Public domain | W3C validator |