| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjlem | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| dpjlem | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . . . 6 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | 1, 2 | dprdf2 19927 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 4 | 3 | ffnd 6658 | . . . 4 ⊢ (𝜑 → 𝑆 Fn 𝐼) |
| 5 | dpjlem.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 6 | fnressn 7097 | . . . 4 ⊢ ((𝑆 Fn 𝐼 ∧ 𝑋 ∈ 𝐼) → (𝑆 ↾ {𝑋}) = {〈𝑋, (𝑆‘𝑋)〉}) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 ↾ {𝑋}) = {〈𝑋, (𝑆‘𝑋)〉}) |
| 8 | 7 | oveq2d 7368 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉})) |
| 9 | 3, 5 | ffvelcdmd 7024 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
| 10 | dprdsn 19956 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈𝑋, (𝑆‘𝑋)〉} ∧ (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉}) = (𝑆‘𝑋))) | |
| 11 | 5, 9, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺dom DProd {〈𝑋, (𝑆‘𝑋)〉} ∧ (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉}) = (𝑆‘𝑋))) |
| 12 | 11 | simprd 495 | . 2 ⊢ (𝜑 → (𝐺 DProd {〈𝑋, (𝑆‘𝑋)〉}) = (𝑆‘𝑋)) |
| 13 | 8, 12 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4575 〈cop 4581 class class class wbr 5093 dom cdm 5619 ↾ cres 5621 Fn wfn 6482 ‘cfv 6487 (class class class)co 7352 SubGrpcsubg 19039 DProd cdprd 19913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-0g 17351 df-gsum 17352 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-ghm 19131 df-gim 19177 df-cntz 19235 df-oppg 19264 df-cmn 19700 df-dprd 19915 |
| This theorem is referenced by: dpjcntz 19972 dpjdisj 19973 dpjlsm 19974 ablfac1eulem 19992 ablfac1eu 19993 |
| Copyright terms: Public domain | W3C validator |