MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmbasfsupp Structured version   Visualization version   GIF version

Theorem frlmbasfsupp 20896
Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmbasfsupp.z 0 = (0g𝑅)
frlmbasfsupp.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
frlmbasfsupp ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp 0 )

Proof of Theorem frlmbasfsupp
StepHypRef Expression
1 simpr 487 . . 3 ((𝐼𝑊𝑋𝐵) → 𝑋𝐵)
2 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
3 frlmbasfsupp.b . . . . 5 𝐵 = (Base‘𝐹)
42, 3frlmrcl 20895 . . . 4 (𝑋𝐵𝑅 ∈ V)
5 simpl 485 . . . 4 ((𝐼𝑊𝑋𝐵) → 𝐼𝑊)
6 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 frlmbasfsupp.z . . . . 5 0 = (0g𝑅)
82, 6, 7, 3frlmelbas 20894 . . . 4 ((𝑅 ∈ V ∧ 𝐼𝑊) → (𝑋𝐵 ↔ (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 )))
94, 5, 8syl2an2 684 . . 3 ((𝐼𝑊𝑋𝐵) → (𝑋𝐵 ↔ (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 )))
101, 9mpbid 234 . 2 ((𝐼𝑊𝑋𝐵) → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 ))
1110simprd 498 1 ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3495   class class class wbr 5059  cfv 6350  (class class class)co 7150  m cmap 8400   finSupp cfsupp 8827  Basecbs 16477  0gc0g 16707   freeLMod cfrlm 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-pws 16717  df-sra 19938  df-rgmod 19939  df-dsmm 20870  df-frlm 20885
This theorem is referenced by:  frlmsplit2  20911  frlmphllem  20918  frlmphl  20919  uvcresum  20931  frlmsslsp  20934  frlmup1  20936  rrxcph  23989
  Copyright terms: Public domain W3C validator