Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmbasfsupp | Structured version Visualization version GIF version |
Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmbasfsupp.z | ⊢ 0 = (0g‘𝑅) |
frlmbasfsupp.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
frlmbasfsupp | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
2 | frlmval.f | . . . . 5 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
3 | frlmbasfsupp.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
4 | 2, 3 | frlmrcl 21013 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
5 | simpl 484 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝐼 ∈ 𝑊) | |
6 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | frlmbasfsupp.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
8 | 2, 6, 7, 3 | frlmelbas 21012 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 ))) |
9 | 4, 5, 8 | syl2an2 684 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 ))) |
10 | 1, 9 | mpbid 231 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 )) |
11 | 10 | simprd 497 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 finSupp cfsupp 9176 Basecbs 16961 0gc0g 17199 freeLMod cfrlm 21002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-hom 17035 df-cco 17036 df-0g 17201 df-prds 17207 df-pws 17209 df-sra 20483 df-rgmod 20484 df-dsmm 20988 df-frlm 21003 |
This theorem is referenced by: frlmsplit2 21029 frlmphllem 21036 frlmphl 21037 uvcresum 21049 frlmsslsp 21052 frlmup1 21054 rrxcph 24605 |
Copyright terms: Public domain | W3C validator |