| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmbasfsupp | Structured version Visualization version GIF version | ||
| Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmbasfsupp.z | ⊢ 0 = (0g‘𝑅) |
| frlmbasfsupp.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| frlmbasfsupp | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 2 | frlmval.f | . . . . 5 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 3 | frlmbasfsupp.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 2, 3 | frlmrcl 21701 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝐼 ∈ 𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | frlmbasfsupp.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 8 | 2, 6, 7, 3 | frlmelbas 21700 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 ))) |
| 9 | 4, 5, 8 | syl2an2 686 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 ))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ∧ 𝑋 finSupp 0 )) |
| 11 | 10 | simprd 495 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ‘cfv 6500 (class class class)co 7370 ↑m cmap 8777 finSupp cfsupp 9289 Basecbs 17157 0gc0g 17380 freeLMod cfrlm 21690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17382 df-prds 17388 df-pws 17390 df-sra 21114 df-rgmod 21115 df-dsmm 21676 df-frlm 21691 |
| This theorem is referenced by: frlmsplit2 21717 frlmphllem 21724 frlmphl 21725 uvcresum 21737 frlmsslsp 21740 frlmup1 21742 rrxcph 25327 |
| Copyright terms: Public domain | W3C validator |