Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
frlmvscafval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmvscafval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmvscafval.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscafval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvscafval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscafval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
frlmvscafval.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscafval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | frlmvscafval.y | . . . . . . . 8 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
3 | frlmvscafval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
4 | 2, 3 | frlmrcl 20964 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
6 | frlmvscafval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | 2, 3 | frlmpws 20957 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
9 | 8 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
10 | frlmvscafval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
11 | 3 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | eqid 2738 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
13 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) | |
14 | 12, 13 | ressvsca 17054 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
15 | 11, 14 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
16 | 9, 10, 15 | 3eqtr4g 2803 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))) |
17 | 16 | oveqd 7292 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋)) |
18 | eqid 2738 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
19 | eqid 2738 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
20 | frlmvscafval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
21 | rlmvsca 20472 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
22 | 20, 21 | eqtri 2766 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
23 | eqid 2738 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
24 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
25 | fvexd 6789 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
26 | frlmvscafval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
27 | frlmvscafval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
28 | rlmsca 20470 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
29 | 5, 28 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
30 | 29 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
31 | 27, 30 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
32 | 26, 31 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
33 | 8 | fveq2d 6778 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
34 | 3, 33 | eqtrid 2790 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
35 | 12, 19 | ressbasss 16950 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
36 | 34, 35 | eqsstrdi 3975 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
37 | 36, 1 | sseldd 3922 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
38 | 18, 19, 22, 13, 23, 24, 25, 6, 32, 37 | pwsvscafval 17205 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
39 | 17, 38 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 ↾s cress 16941 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 ↑s cpws 17157 ringLModcrglmod 20431 freeLMod cfrlm 20953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-prds 17158 df-pws 17160 df-sra 20434 df-rgmod 20435 df-dsmm 20939 df-frlm 20954 |
This theorem is referenced by: frlmvscaval 20975 uvcresum 21000 matvsca2 21577 matunitlindflem1 35773 matunitlindflem2 35774 frlmvscadiccat 40237 mhphf3 40287 0prjspnrel 40464 zlmodzxzscm 45693 aacllem 46505 |
Copyright terms: Public domain | W3C validator |