![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
frlmvscafval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmvscafval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmvscafval.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscafval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvscafval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscafval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
frlmvscafval.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscafval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | frlmvscafval.y | . . . . . . . 8 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
3 | frlmvscafval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
4 | 2, 3 | frlmrcl 21622 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
6 | frlmvscafval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | 2, 3 | frlmpws 21615 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
8 | 5, 6, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
9 | 8 | fveq2d 6886 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
10 | frlmvscafval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
11 | 3 | fvexi 6896 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | eqid 2724 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
13 | eqid 2724 | . . . . . 6 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) | |
14 | 12, 13 | ressvsca 17290 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
15 | 11, 14 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
16 | 9, 10, 15 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))) |
17 | 16 | oveqd 7419 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋)) |
18 | eqid 2724 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
19 | eqid 2724 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
20 | frlmvscafval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
21 | rlmvsca 21048 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
22 | 20, 21 | eqtri 2752 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
23 | eqid 2724 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
24 | eqid 2724 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
25 | fvexd 6897 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
26 | frlmvscafval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
27 | frlmvscafval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
28 | rlmsca 21046 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
29 | 5, 28 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
30 | 29 | fveq2d 6886 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
31 | 27, 30 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
32 | 26, 31 | eleqtrd 2827 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
33 | 8 | fveq2d 6886 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
34 | 3, 33 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
35 | 12, 19 | ressbasss 17184 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
36 | 34, 35 | eqsstrdi 4029 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
37 | 36, 1 | sseldd 3976 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
38 | 18, 19, 22, 13, 23, 24, 25, 6, 32, 37 | pwsvscafval 17441 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
39 | 17, 38 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4621 × cxp 5665 ‘cfv 6534 (class class class)co 7402 ∘f cof 7662 Basecbs 17145 ↾s cress 17174 .rcmulr 17199 Scalarcsca 17201 ·𝑠 cvsca 17202 ↑s cpws 17393 ringLModcrglmod 21012 freeLMod cfrlm 21611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-fz 13483 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-prds 17394 df-pws 17396 df-sra 21013 df-rgmod 21014 df-dsmm 21597 df-frlm 21612 |
This theorem is referenced by: frlmvscaval 21633 uvcresum 21658 matvsca2 22254 matunitlindflem1 36978 matunitlindflem2 36979 frlmvscadiccat 41577 mhphf3 41664 0prjspnrel 41883 zlmodzxzscm 47247 aacllem 48060 |
Copyright terms: Public domain | W3C validator |