MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscafval Structured version   Visualization version   GIF version

Theorem frlmvscafval 21703
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmvscafval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmvscafval.b 𝐵 = (Base‘𝑌)
frlmvscafval.k 𝐾 = (Base‘𝑅)
frlmvscafval.i (𝜑𝐼𝑊)
frlmvscafval.a (𝜑𝐴𝐾)
frlmvscafval.x (𝜑𝑋𝐵)
frlmvscafval.v = ( ·𝑠𝑌)
frlmvscafval.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))

Proof of Theorem frlmvscafval
StepHypRef Expression
1 frlmvscafval.x . . . . . . 7 (𝜑𝑋𝐵)
2 frlmvscafval.y . . . . . . . 8 𝑌 = (𝑅 freeLMod 𝐼)
3 frlmvscafval.b . . . . . . . 8 𝐵 = (Base‘𝑌)
42, 3frlmrcl 21694 . . . . . . 7 (𝑋𝐵𝑅 ∈ V)
51, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
6 frlmvscafval.i . . . . . 6 (𝜑𝐼𝑊)
72, 3frlmpws 21687 . . . . . 6 ((𝑅 ∈ V ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
85, 6, 7syl2anc 584 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
98fveq2d 6826 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
10 frlmvscafval.v . . . 4 = ( ·𝑠𝑌)
113fvexi 6836 . . . . 5 𝐵 ∈ V
12 eqid 2731 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
13 eqid 2731 . . . . . 6 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))
1412, 13ressvsca 17248 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
1511, 14ax-mp 5 . . . 4 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
169, 10, 153eqtr4g 2791 . . 3 (𝜑 = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)))
1716oveqd 7363 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋))
18 eqid 2731 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
19 eqid 2731 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
20 frlmvscafval.t . . . 4 · = (.r𝑅)
21 rlmvsca 21134 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
2220, 21eqtri 2754 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
23 eqid 2731 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
24 eqid 2731 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
25 fvexd 6837 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
26 frlmvscafval.a . . . 4 (𝜑𝐴𝐾)
27 frlmvscafval.k . . . . 5 𝐾 = (Base‘𝑅)
28 rlmsca 21132 . . . . . . 7 (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
295, 28syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
3029fveq2d 6826 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
3127, 30eqtrid 2778 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅))))
3226, 31eleqtrd 2833 . . 3 (𝜑𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))))
338fveq2d 6826 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
343, 33eqtrid 2778 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
3512, 19ressbasss 17150 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
3634, 35eqsstrdi 3974 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3736, 1sseldd 3930 . . 3 (𝜑𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3818, 19, 22, 13, 23, 24, 25, 6, 32, 37pwsvscafval 17398 . 2 (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
3917, 38eqtrd 2766 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573   × cxp 5612  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  s cress 17141  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  s cpws 17350  ringLModcrglmod 21106   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  frlmvscaval  21705  uvcresum  21730  matvsca2  22343  matunitlindflem1  37666  matunitlindflem2  37667  frlmvscadiccat  42609  mhphf3  42702  0prjspnrel  42730  zlmodzxzscm  48467  aacllem  49912
  Copyright terms: Public domain W3C validator