Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
frlmvscafval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmvscafval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmvscafval.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscafval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvscafval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscafval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
frlmvscafval.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscafval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | frlmvscafval.y | . . . . . . . 8 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
3 | frlmvscafval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
4 | 2, 3 | frlmrcl 20566 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
6 | frlmvscafval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | 2, 3 | frlmpws 20559 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
8 | 5, 6, 7 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
9 | 8 | fveq2d 6672 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
10 | frlmvscafval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
11 | 3 | fvexi 6682 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | eqid 2738 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
13 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) | |
14 | 12, 13 | ressvsca 16747 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
15 | 11, 14 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
16 | 9, 10, 15 | 3eqtr4g 2798 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))) |
17 | 16 | oveqd 7181 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋)) |
18 | eqid 2738 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
19 | eqid 2738 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
20 | frlmvscafval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
21 | rlmvsca 20086 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
22 | 20, 21 | eqtri 2761 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
23 | eqid 2738 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
24 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
25 | fvexd 6683 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
26 | frlmvscafval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
27 | frlmvscafval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
28 | rlmsca 20084 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
29 | 5, 28 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
30 | 29 | fveq2d 6672 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
31 | 27, 30 | syl5eq 2785 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
32 | 26, 31 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
33 | 8 | fveq2d 6672 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
34 | 3, 33 | syl5eq 2785 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
35 | 12, 19 | ressbasss 16652 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
36 | 34, 35 | eqsstrdi 3929 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
37 | 36, 1 | sseldd 3876 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
38 | 18, 19, 22, 13, 23, 24, 25, 6, 32, 37 | pwsvscafval 16863 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
39 | 17, 38 | eqtrd 2773 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 Vcvv 3397 {csn 4513 × cxp 5517 ‘cfv 6333 (class class class)co 7164 ∘f cof 7417 Basecbs 16579 ↾s cress 16580 .rcmulr 16662 Scalarcsca 16664 ·𝑠 cvsca 16665 ↑s cpws 16816 ringLModcrglmod 20053 freeLMod cfrlm 20555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-fz 12975 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-hom 16685 df-cco 16686 df-prds 16817 df-pws 16819 df-sra 20056 df-rgmod 20057 df-dsmm 20541 df-frlm 20556 |
This theorem is referenced by: frlmvscaval 20577 uvcresum 20602 matvsca2 21172 matunitlindflem1 35385 matunitlindflem2 35386 frlmvscadiccat 39803 0prjspnrel 40025 zlmodzxzscm 45211 aacllem 45942 |
Copyright terms: Public domain | W3C validator |