MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscafval Structured version   Visualization version   GIF version

Theorem frlmvscafval 21804
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmvscafval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmvscafval.b 𝐵 = (Base‘𝑌)
frlmvscafval.k 𝐾 = (Base‘𝑅)
frlmvscafval.i (𝜑𝐼𝑊)
frlmvscafval.a (𝜑𝐴𝐾)
frlmvscafval.x (𝜑𝑋𝐵)
frlmvscafval.v = ( ·𝑠𝑌)
frlmvscafval.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))

Proof of Theorem frlmvscafval
StepHypRef Expression
1 frlmvscafval.x . . . . . . 7 (𝜑𝑋𝐵)
2 frlmvscafval.y . . . . . . . 8 𝑌 = (𝑅 freeLMod 𝐼)
3 frlmvscafval.b . . . . . . . 8 𝐵 = (Base‘𝑌)
42, 3frlmrcl 21795 . . . . . . 7 (𝑋𝐵𝑅 ∈ V)
51, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
6 frlmvscafval.i . . . . . 6 (𝜑𝐼𝑊)
72, 3frlmpws 21788 . . . . . 6 ((𝑅 ∈ V ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
85, 6, 7syl2anc 584 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
98fveq2d 6911 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
10 frlmvscafval.v . . . 4 = ( ·𝑠𝑌)
113fvexi 6921 . . . . 5 𝐵 ∈ V
12 eqid 2735 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
13 eqid 2735 . . . . . 6 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))
1412, 13ressvsca 17390 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
1511, 14ax-mp 5 . . . 4 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
169, 10, 153eqtr4g 2800 . . 3 (𝜑 = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)))
1716oveqd 7448 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋))
18 eqid 2735 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
19 eqid 2735 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
20 frlmvscafval.t . . . 4 · = (.r𝑅)
21 rlmvsca 21225 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
2220, 21eqtri 2763 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
23 eqid 2735 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
24 eqid 2735 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
25 fvexd 6922 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
26 frlmvscafval.a . . . 4 (𝜑𝐴𝐾)
27 frlmvscafval.k . . . . 5 𝐾 = (Base‘𝑅)
28 rlmsca 21223 . . . . . . 7 (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
295, 28syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
3029fveq2d 6911 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
3127, 30eqtrid 2787 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅))))
3226, 31eleqtrd 2841 . . 3 (𝜑𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))))
338fveq2d 6911 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
343, 33eqtrid 2787 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
3512, 19ressbasss 17284 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
3634, 35eqsstrdi 4050 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3736, 1sseldd 3996 . . 3 (𝜑𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3818, 19, 22, 13, 23, 24, 25, 6, 32, 37pwsvscafval 17541 . 2 (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
3917, 38eqtrd 2775 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631   × cxp 5687  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  s cress 17274  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  s cpws 17493  ringLModcrglmod 21189   freeLMod cfrlm 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-prds 17494  df-pws 17496  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785
This theorem is referenced by:  frlmvscaval  21806  uvcresum  21831  matvsca2  22450  matunitlindflem1  37603  matunitlindflem2  37604  frlmvscadiccat  42493  mhphf3  42586  0prjspnrel  42614  zlmodzxzscm  48202  aacllem  49032
  Copyright terms: Public domain W3C validator