MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscafval Structured version   Visualization version   GIF version

Theorem frlmvscafval 20826
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmvscafval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmvscafval.b 𝐵 = (Base‘𝑌)
frlmvscafval.k 𝐾 = (Base‘𝑅)
frlmvscafval.i (𝜑𝐼𝑊)
frlmvscafval.a (𝜑𝐴𝐾)
frlmvscafval.x (𝜑𝑋𝐵)
frlmvscafval.v = ( ·𝑠𝑌)
frlmvscafval.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))

Proof of Theorem frlmvscafval
StepHypRef Expression
1 frlmvscafval.x . . . . . . 7 (𝜑𝑋𝐵)
2 frlmvscafval.y . . . . . . . 8 𝑌 = (𝑅 freeLMod 𝐼)
3 frlmvscafval.b . . . . . . . 8 𝐵 = (Base‘𝑌)
42, 3frlmrcl 20817 . . . . . . 7 (𝑋𝐵𝑅 ∈ V)
51, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
6 frlmvscafval.i . . . . . 6 (𝜑𝐼𝑊)
72, 3frlmpws 20810 . . . . . 6 ((𝑅 ∈ V ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
85, 6, 7syl2anc 584 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
98fveq2d 6670 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
10 frlmvscafval.v . . . 4 = ( ·𝑠𝑌)
113fvexi 6680 . . . . 5 𝐵 ∈ V
12 eqid 2824 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
13 eqid 2824 . . . . . 6 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))
1412, 13ressvsca 16643 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
1511, 14ax-mp 5 . . . 4 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
169, 10, 153eqtr4g 2885 . . 3 (𝜑 = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)))
1716oveqd 7168 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋))
18 eqid 2824 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
19 eqid 2824 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
20 frlmvscafval.t . . . 4 · = (.r𝑅)
21 rlmvsca 19896 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
2220, 21eqtri 2848 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
23 eqid 2824 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
24 eqid 2824 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
25 fvexd 6681 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
26 frlmvscafval.a . . . 4 (𝜑𝐴𝐾)
27 frlmvscafval.k . . . . 5 𝐾 = (Base‘𝑅)
28 rlmsca 19894 . . . . . . 7 (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
295, 28syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
3029fveq2d 6670 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
3127, 30syl5eq 2872 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅))))
3226, 31eleqtrd 2919 . . 3 (𝜑𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))))
338fveq2d 6670 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
343, 33syl5eq 2872 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
3512, 19ressbasss 16548 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
3634, 35eqsstrdi 4024 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3736, 1sseldd 3971 . . 3 (𝜑𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3818, 19, 22, 13, 23, 24, 25, 6, 32, 37pwsvscafval 16759 . 2 (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
3917, 38eqtrd 2860 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2106  Vcvv 3499  {csn 4563   × cxp 5551  cfv 6351  (class class class)co 7151  f cof 7400  Basecbs 16475  s cress 16476  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  s cpws 16712  ringLModcrglmod 19863   freeLMod cfrlm 20806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715  df-sra 19866  df-rgmod 19867  df-dsmm 20792  df-frlm 20807
This theorem is referenced by:  frlmvscaval  20828  uvcresum  20853  matvsca2  20953  matunitlindflem1  34756  matunitlindflem2  34757  frlmvscadiccat  39009  0prjspnrel  39131  zlmodzxzscm  44234  aacllem  44731
  Copyright terms: Public domain W3C validator