| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmvscafval | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| frlmvscafval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmvscafval.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmvscafval.k | ⊢ 𝐾 = (Base‘𝑅) |
| frlmvscafval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| frlmvscafval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| frlmvscafval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
| frlmvscafval.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| frlmvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscafval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | frlmvscafval.y | . . . . . . . 8 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 3 | frlmvscafval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | 2, 3 | frlmrcl 21642 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
| 6 | frlmvscafval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 7 | 2, 3 | frlmpws 21635 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 9 | 8 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 10 | frlmvscafval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
| 11 | 3 | fvexi 6854 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | eqid 2729 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 14 | 12, 13 | ressvsca 17283 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 15 | 11, 14 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 16 | 9, 10, 15 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 17 | 16 | oveqd 7386 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋)) |
| 18 | eqid 2729 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
| 19 | eqid 2729 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 20 | frlmvscafval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 21 | rlmvsca 21083 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
| 22 | 20, 21 | eqtri 2752 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
| 23 | eqid 2729 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 24 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
| 25 | fvexd 6855 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
| 26 | frlmvscafval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 27 | frlmvscafval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 28 | rlmsca 21081 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 29 | 5, 28 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 30 | 29 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 31 | 27, 30 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 32 | 26, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 33 | 8 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 34 | 3, 33 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 35 | 12, 19 | ressbasss 17185 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
| 36 | 34, 35 | eqsstrdi 3988 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 37 | 36, 1 | sseldd 3944 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 38 | 18, 19, 22, 13, 23, 24, 25, 6, 32, 37 | pwsvscafval 17433 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| 39 | 17, 38 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 ↑s cpws 17385 ringLModcrglmod 21055 freeLMod cfrlm 21631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-prds 17386 df-pws 17388 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 |
| This theorem is referenced by: frlmvscaval 21653 uvcresum 21678 matvsca2 22291 matunitlindflem1 37583 matunitlindflem2 37584 frlmvscadiccat 42467 mhphf3 42560 0prjspnrel 42588 zlmodzxzscm 48318 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |