| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmvscafval | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| frlmvscafval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmvscafval.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmvscafval.k | ⊢ 𝐾 = (Base‘𝑅) |
| frlmvscafval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| frlmvscafval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| frlmvscafval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
| frlmvscafval.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| frlmvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscafval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | frlmvscafval.y | . . . . . . . 8 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 3 | frlmvscafval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | 2, 3 | frlmrcl 21664 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
| 6 | frlmvscafval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 7 | 2, 3 | frlmpws 21657 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 9 | 8 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 10 | frlmvscafval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
| 11 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | eqid 2729 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 14 | 12, 13 | ressvsca 17248 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 15 | 11, 14 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 16 | 9, 10, 15 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 17 | 16 | oveqd 7366 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋)) |
| 18 | eqid 2729 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
| 19 | eqid 2729 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 20 | frlmvscafval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 21 | rlmvsca 21104 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
| 22 | 20, 21 | eqtri 2752 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
| 23 | eqid 2729 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 24 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
| 25 | fvexd 6837 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
| 26 | frlmvscafval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 27 | frlmvscafval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 28 | rlmsca 21102 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 29 | 5, 28 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 30 | 29 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 31 | 27, 30 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 32 | 26, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 33 | 8 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 34 | 3, 33 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 35 | 12, 19 | ressbasss 17150 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
| 36 | 34, 35 | eqsstrdi 3980 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 37 | 36, 1 | sseldd 3936 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 38 | 18, 19, 22, 13, 23, 24, 25, 6, 32, 37 | pwsvscafval 17398 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| 39 | 17, 38 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 × cxp 5617 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 ↑s cpws 17350 ringLModcrglmod 21076 freeLMod cfrlm 21653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-prds 17351 df-pws 17353 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 |
| This theorem is referenced by: frlmvscaval 21675 uvcresum 21700 matvsca2 22313 matunitlindflem1 37600 matunitlindflem2 37601 frlmvscadiccat 42483 mhphf3 42576 0prjspnrel 42604 zlmodzxzscm 48345 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |