Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsuc0val Structured version   Visualization version   GIF version

Theorem ackvalsuc0val 48815
Description: The Ackermann function at a successor (of the first argument). This is the second equation of Péter's definition of the Ackermann function. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackvalsuc0val (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1))

Proof of Theorem ackvalsuc0val
StepHypRef Expression
1 0nn0 12405 . . 3 0 ∈ ℕ0
2 ackvalsuc1 48807 . . 3 ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘0) = (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1))
31, 2mpan2 691 . 2 (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1))
4 0p1e1 12251 . . . . . 6 (0 + 1) = 1
54a1i 11 . . . . 5 (𝑀 ∈ ℕ0 → (0 + 1) = 1)
65fveq2d 6834 . . . 4 (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘(0 + 1)) = ((IterComp‘(Ack‘𝑀))‘1))
7 ackfnnn0 48813 . . . . . 6 (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0)
8 fnfun 6588 . . . . . 6 ((Ack‘𝑀) Fn ℕ0 → Fun (Ack‘𝑀))
9 funrel 6505 . . . . . 6 (Fun (Ack‘𝑀) → Rel (Ack‘𝑀))
107, 8, 93syl 18 . . . . 5 (𝑀 ∈ ℕ0 → Rel (Ack‘𝑀))
11 fvex 6843 . . . . 5 (Ack‘𝑀) ∈ V
12 itcoval1 48791 . . . . 5 ((Rel (Ack‘𝑀) ∧ (Ack‘𝑀) ∈ V) → ((IterComp‘(Ack‘𝑀))‘1) = (Ack‘𝑀))
1310, 11, 12sylancl 586 . . . 4 (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘1) = (Ack‘𝑀))
146, 13eqtrd 2768 . . 3 (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘(0 + 1)) = (Ack‘𝑀))
1514fveq1d 6832 . 2 (𝑀 ∈ ℕ0 → (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1) = ((Ack‘𝑀)‘1))
163, 15eqtrd 2768 1 (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  Rel wrel 5626  Fun wfun 6482   Fn wfn 6483  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018  0cn0 12390  IterCompcitco 48785  Ackcack 48786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-seq 13913  df-itco 48787  df-ack 48788
This theorem is referenced by:  ackval40  48821  ackval50  48826
  Copyright terms: Public domain W3C validator