![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackvalsuc0val | Structured version Visualization version GIF version |
Description: The Ackermann function at a successor (of the first argument). This is the second equation of Péter's definition of the Ackermann function. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackvalsuc0val | ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12539 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | ackvalsuc1 48529 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘0) = (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1)) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1)) |
4 | 0p1e1 12386 | . . . . . 6 ⊢ (0 + 1) = 1 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (0 + 1) = 1) |
6 | 5 | fveq2d 6911 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘(0 + 1)) = ((IterComp‘(Ack‘𝑀))‘1)) |
7 | ackfnnn0 48535 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0) | |
8 | fnfun 6669 | . . . . . 6 ⊢ ((Ack‘𝑀) Fn ℕ0 → Fun (Ack‘𝑀)) | |
9 | funrel 6585 | . . . . . 6 ⊢ (Fun (Ack‘𝑀) → Rel (Ack‘𝑀)) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → Rel (Ack‘𝑀)) |
11 | fvex 6920 | . . . . 5 ⊢ (Ack‘𝑀) ∈ V | |
12 | itcoval1 48513 | . . . . 5 ⊢ ((Rel (Ack‘𝑀) ∧ (Ack‘𝑀) ∈ V) → ((IterComp‘(Ack‘𝑀))‘1) = (Ack‘𝑀)) | |
13 | 10, 11, 12 | sylancl 586 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘1) = (Ack‘𝑀)) |
14 | 6, 13 | eqtrd 2775 | . . 3 ⊢ (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘(0 + 1)) = (Ack‘𝑀)) |
15 | 14 | fveq1d 6909 | . 2 ⊢ (𝑀 ∈ ℕ0 → (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1) = ((Ack‘𝑀)‘1)) |
16 | 3, 15 | eqtrd 2775 | 1 ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 Rel wrel 5694 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ℕ0cn0 12524 IterCompcitco 48507 Ackcack 48508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-itco 48509 df-ack 48510 |
This theorem is referenced by: ackval40 48543 ackval50 48548 |
Copyright terms: Public domain | W3C validator |