Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackvalsuc0val | Structured version Visualization version GIF version |
Description: The Ackermann function at a successor (of the first argument). This is the second equation of Péter's definition of the Ackermann function. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackvalsuc0val | ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12341 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | ackvalsuc1 46365 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘0) = (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1)) | |
3 | 1, 2 | mpan2 688 | . 2 ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1)) |
4 | 0p1e1 12188 | . . . . . 6 ⊢ (0 + 1) = 1 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (0 + 1) = 1) |
6 | 5 | fveq2d 6823 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘(0 + 1)) = ((IterComp‘(Ack‘𝑀))‘1)) |
7 | ackfnnn0 46371 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0) | |
8 | fnfun 6579 | . . . . . 6 ⊢ ((Ack‘𝑀) Fn ℕ0 → Fun (Ack‘𝑀)) | |
9 | funrel 6495 | . . . . . 6 ⊢ (Fun (Ack‘𝑀) → Rel (Ack‘𝑀)) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → Rel (Ack‘𝑀)) |
11 | fvex 6832 | . . . . 5 ⊢ (Ack‘𝑀) ∈ V | |
12 | itcoval1 46349 | . . . . 5 ⊢ ((Rel (Ack‘𝑀) ∧ (Ack‘𝑀) ∈ V) → ((IterComp‘(Ack‘𝑀))‘1) = (Ack‘𝑀)) | |
13 | 10, 11, 12 | sylancl 586 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘1) = (Ack‘𝑀)) |
14 | 6, 13 | eqtrd 2776 | . . 3 ⊢ (𝑀 ∈ ℕ0 → ((IterComp‘(Ack‘𝑀))‘(0 + 1)) = (Ack‘𝑀)) |
15 | 14 | fveq1d 6821 | . 2 ⊢ (𝑀 ∈ ℕ0 → (((IterComp‘(Ack‘𝑀))‘(0 + 1))‘1) = ((Ack‘𝑀)‘1)) |
16 | 3, 15 | eqtrd 2776 | 1 ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 Rel wrel 5619 Fun wfun 6467 Fn wfn 6468 ‘cfv 6473 (class class class)co 7329 0cc0 10964 1c1 10965 + caddc 10967 ℕ0cn0 12326 IterCompcitco 46343 Ackcack 46344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-seq 13815 df-itco 46345 df-ack 46346 |
This theorem is referenced by: ackval40 46379 ackval50 46384 |
Copyright terms: Public domain | W3C validator |