MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrev2 Structured version   Visualization version   GIF version

Theorem fsumrev2 15689
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumrev2.1 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumrev2.2 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumrev2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumrev2
StepHypRef Expression
1 sum0 15628 . . . . 5 Σ𝑗 ∈ ∅ 𝐴 = 0
2 sum0 15628 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
31, 2eqtr4i 2755 . . . 4 Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵
4 sumeq1 15596 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴)
5 sumeq1 15596 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵)
63, 4, 53eqtr4a 2790 . . 3 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
76adantl 481 . 2 ((𝜑 ∧ (𝑀...𝑁) = ∅) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
8 fzn0 13441 . . 3 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
9 eluzel2 12740 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109adantl 481 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 eluzelz 12745 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1211adantl 481 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
1310, 12zaddcld 12584 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀 + 𝑁) ∈ ℤ)
14 fsumrev2.1 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1514adantlr 715 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
16 fsumrev2.2 . . . . 5 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
1713, 10, 12, 15, 16fsumrev 15686 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵)
1810zcnd 12581 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
1912zcnd 12581 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
2018, 19pncand 11476 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
2118, 19pncan2d 11477 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
2220, 21oveq12d 7367 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁))
2322sumeq1d 15607 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2417, 23eqtrd 2764 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
258, 24sylan2b 594 . 2 ((𝜑 ∧ (𝑀...𝑁) ≠ ∅) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
267, 25pm2.61dane 3012 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4284  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012  cmin 11347  cz 12471  cuz 12735  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  fsum0diag2  15690  efaddlem  16000  aareccl  26232
  Copyright terms: Public domain W3C validator