MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrev2 Structured version   Visualization version   GIF version

Theorem fsumrev2 14852
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumrev2.1 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumrev2.2 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumrev2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumrev2
StepHypRef Expression
1 sum0 14793 . . . . 5 Σ𝑗 ∈ ∅ 𝐴 = 0
2 sum0 14793 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
31, 2eqtr4i 2824 . . . 4 Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵
4 sumeq1 14760 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴)
5 sumeq1 14760 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵)
63, 4, 53eqtr4a 2859 . . 3 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
76adantl 474 . 2 ((𝜑 ∧ (𝑀...𝑁) = ∅) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
8 fzn0 12609 . . 3 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
9 eluzel2 11935 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109adantl 474 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 eluzelz 11940 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1211adantl 474 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
1310, 12zaddcld 11776 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀 + 𝑁) ∈ ℤ)
14 fsumrev2.1 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1514adantlr 707 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
16 fsumrev2.2 . . . . 5 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
1713, 10, 12, 15, 16fsumrev 14849 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵)
1810zcnd 11773 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
1912zcnd 11773 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
2018, 19pncand 10685 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
2118, 19pncan2d 10686 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
2220, 21oveq12d 6896 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁))
2322sumeq1d 14772 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2417, 23eqtrd 2833 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
258, 24sylan2b 588 . 2 ((𝜑 ∧ (𝑀...𝑁) ≠ ∅) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
267, 25pm2.61dane 3058 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2971  c0 4115  cfv 6101  (class class class)co 6878  cc 10222  0cc0 10224   + caddc 10227  cmin 10556  cz 11666  cuz 11930  ...cfz 12580  Σcsu 14757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-fz 12581  df-fzo 12721  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-sum 14758
This theorem is referenced by:  fsum0diag2  14853  efaddlem  15159  aareccl  24422
  Copyright terms: Public domain W3C validator