Proof of Theorem fzfi
Step | Hyp | Ref
| Expression |
1 | | 0fin 8849 |
. . 3
⊢ ∅
∈ Fin |
2 | | eleq1 2825 |
. . 3
⊢ ((𝑀...𝑁) = ∅ → ((𝑀...𝑁) ∈ Fin ↔ ∅ ∈
Fin)) |
3 | 1, 2 | mpbiri 261 |
. 2
⊢ ((𝑀...𝑁) = ∅ → (𝑀...𝑁) ∈ Fin) |
4 | | fzn0 13126 |
. . 3
⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | | onfin2 8871 |
. . . . . 6
⊢ ω =
(On ∩ Fin) |
6 | | inss2 4144 |
. . . . . 6
⊢ (On ∩
Fin) ⊆ Fin |
7 | 5, 6 | eqsstri 3935 |
. . . . 5
⊢ ω
⊆ Fin |
8 | | eqid 2737 |
. . . . . . 7
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) = (rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) |
9 | 8 | hashgf1o 13544 |
. . . . . 6
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω):ω–1-1-onto→ℕ0 |
10 | | peano2uz 12497 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
11 | | uznn0sub 12473 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈
(ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈
ℕ0) |
12 | 10, 11 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈
ℕ0) |
13 | | f1ocnvdm 7095 |
. . . . . 6
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω):ω–1-1-onto→ℕ0 ∧ ((𝑁 + 1) − 𝑀) ∈ ℕ0) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((𝑁 + 1) − 𝑀)) ∈ ω) |
14 | 9, 12, 13 | sylancr 590 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((𝑁 + 1) − 𝑀)) ∈ ω) |
15 | 7, 14 | sselid 3898 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((𝑁 + 1) − 𝑀)) ∈ Fin) |
16 | 8 | fzen2 13542 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((𝑁 + 1) − 𝑀))) |
17 | | enfii 8864 |
. . . 4
⊢ (((◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((𝑁 + 1) − 𝑀)) ∈ Fin ∧ (𝑀...𝑁) ≈ (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ∈ Fin) |
18 | 15, 16, 17 | syl2anc 587 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...𝑁) ∈ Fin) |
19 | 4, 18 | sylbi 220 |
. 2
⊢ ((𝑀...𝑁) ≠ ∅ → (𝑀...𝑁) ∈ Fin) |
20 | 3, 19 | pm2.61ine 3025 |
1
⊢ (𝑀...𝑁) ∈ Fin |