![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fseqsupcl | Structured version Visualization version GIF version |
Description: The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fseqsupcl | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6744 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ran 𝐹 ⊆ ℝ) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ⊆ ℝ) |
3 | fzfi 14010 | . . . 4 ⊢ (𝑀...𝑁) ∈ Fin | |
4 | ffn 6737 | . . . . . 6 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → 𝐹 Fn (𝑀...𝑁)) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝐹 Fn (𝑀...𝑁)) |
6 | dffn4 6827 | . . . . 5 ⊢ (𝐹 Fn (𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–onto→ran 𝐹) | |
7 | 5, 6 | sylib 218 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝐹:(𝑀...𝑁)–onto→ran 𝐹) |
8 | fofi 9349 | . . . 4 ⊢ (((𝑀...𝑁) ∈ Fin ∧ 𝐹:(𝑀...𝑁)–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
9 | 3, 7, 8 | sylancr 587 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ∈ Fin) |
10 | fdm 6746 | . . . . . 6 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → dom 𝐹 = (𝑀...𝑁)) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → dom 𝐹 = (𝑀...𝑁)) |
12 | simpl 482 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | fzn0 13575 | . . . . . 6 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | |
14 | 12, 13 | sylibr 234 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝑀...𝑁) ≠ ∅) |
15 | 11, 14 | eqnetrd 3006 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → dom 𝐹 ≠ ∅) |
16 | dm0rn0 5938 | . . . . 5 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
17 | 16 | necon3bii 2991 | . . . 4 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
18 | 15, 17 | sylib 218 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ≠ ∅) |
19 | ltso 11339 | . . . 4 ⊢ < Or ℝ | |
20 | fisupcl 9507 | . . . 4 ⊢ (( < Or ℝ ∧ (ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ)) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) | |
21 | 19, 20 | mpan 690 | . . 3 ⊢ ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
22 | 9, 18, 2, 21 | syl3anc 1370 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
23 | 2, 22 | sseldd 3996 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 ∅c0 4339 Or wor 5596 dom cdm 5689 ran crn 5690 Fn wfn 6558 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 supcsup 9478 ℝcr 11152 < clt 11293 ℤ≥cuz 12876 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |