![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fseqsupcl | Structured version Visualization version GIF version |
Description: The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fseqsupcl | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6391 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ran 𝐹 ⊆ ℝ) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ⊆ ℝ) |
3 | fzfi 13190 | . . . 4 ⊢ (𝑀...𝑁) ∈ Fin | |
4 | ffn 6385 | . . . . . 6 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → 𝐹 Fn (𝑀...𝑁)) | |
5 | 4 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝐹 Fn (𝑀...𝑁)) |
6 | dffn4 6467 | . . . . 5 ⊢ (𝐹 Fn (𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–onto→ran 𝐹) | |
7 | 5, 6 | sylib 219 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝐹:(𝑀...𝑁)–onto→ran 𝐹) |
8 | fofi 8659 | . . . 4 ⊢ (((𝑀...𝑁) ∈ Fin ∧ 𝐹:(𝑀...𝑁)–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
9 | 3, 7, 8 | sylancr 587 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ∈ Fin) |
10 | fdm 6393 | . . . . . 6 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → dom 𝐹 = (𝑀...𝑁)) | |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → dom 𝐹 = (𝑀...𝑁)) |
12 | simpl 483 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | fzn0 12771 | . . . . . 6 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | |
14 | 12, 13 | sylibr 235 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝑀...𝑁) ≠ ∅) |
15 | 11, 14 | eqnetrd 3050 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → dom 𝐹 ≠ ∅) |
16 | dm0rn0 5682 | . . . . 5 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
17 | 16 | necon3bii 3035 | . . . 4 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
18 | 15, 17 | sylib 219 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ≠ ∅) |
19 | ltso 10570 | . . . 4 ⊢ < Or ℝ | |
20 | fisupcl 8782 | . . . 4 ⊢ (( < Or ℝ ∧ (ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ)) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) | |
21 | 19, 20 | mpan 686 | . . 3 ⊢ ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
22 | 9, 18, 2, 21 | syl3anc 1364 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
23 | 2, 22 | sseldd 3892 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 ⊆ wss 3861 ∅c0 4213 Or wor 5364 dom cdm 5446 ran crn 5447 Fn wfn 6223 ⟶wf 6224 –onto→wfo 6226 ‘cfv 6228 (class class class)co 7019 Fincfn 8360 supcsup 8753 ℝcr 10385 < clt 10524 ℤ≥cuz 12093 ...cfz 12742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-sup 8755 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-nn 11489 df-n0 11748 df-z 11832 df-uz 12094 df-fz 12743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |