| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fseqsupcl | Structured version Visualization version GIF version | ||
| Description: The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fseqsupcl | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6663 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ran 𝐹 ⊆ ℝ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ⊆ ℝ) |
| 3 | fzfi 13881 | . . . 4 ⊢ (𝑀...𝑁) ∈ Fin | |
| 4 | ffn 6656 | . . . . . 6 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → 𝐹 Fn (𝑀...𝑁)) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝐹 Fn (𝑀...𝑁)) |
| 6 | dffn4 6746 | . . . . 5 ⊢ (𝐹 Fn (𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–onto→ran 𝐹) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝐹:(𝑀...𝑁)–onto→ran 𝐹) |
| 8 | fofi 9204 | . . . 4 ⊢ (((𝑀...𝑁) ∈ Fin ∧ 𝐹:(𝑀...𝑁)–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
| 9 | 3, 7, 8 | sylancr 587 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ∈ Fin) |
| 10 | fdm 6665 | . . . . . 6 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → dom 𝐹 = (𝑀...𝑁)) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → dom 𝐹 = (𝑀...𝑁)) |
| 12 | simpl 482 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 13 | fzn0 13440 | . . . . . 6 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 14 | 12, 13 | sylibr 234 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝑀...𝑁) ≠ ∅) |
| 15 | 11, 14 | eqnetrd 2996 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → dom 𝐹 ≠ ∅) |
| 16 | dm0rn0 5868 | . . . . 5 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 17 | 16 | necon3bii 2981 | . . . 4 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
| 18 | 15, 17 | sylib 218 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ≠ ∅) |
| 19 | ltso 11200 | . . . 4 ⊢ < Or ℝ | |
| 20 | fisupcl 9361 | . . . 4 ⊢ (( < Or ℝ ∧ (ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ)) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) | |
| 21 | 19, 20 | mpan 690 | . . 3 ⊢ ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
| 22 | 9, 18, 2, 21 | syl3anc 1373 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
| 23 | 2, 22 | sseldd 3931 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 Or wor 5526 dom cdm 5619 ran crn 5620 Fn wfn 6481 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 supcsup 9331 ℝcr 11012 < clt 11153 ℤ≥cuz 12738 ...cfz 13409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |