| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addasspr | Structured version Visualization version GIF version | ||
| Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addasspr | ⊢ ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plp 10995 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 +Q 𝑧)}) | |
| 2 | addclnq 10957 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
| 3 | dmplp 11024 | . 2 ⊢ dom +P = (P × P) | |
| 4 | addclpr 11030 | . 2 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) ∈ P) | |
| 5 | addassnq 10970 | . 2 ⊢ ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ)) | |
| 6 | 1, 2, 3, 4, 5 | genpass 11021 | 1 ⊢ ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 +Q cplq 10867 +P cpp 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8717 df-ni 10884 df-pli 10885 df-mi 10886 df-lti 10887 df-plpq 10920 df-mpq 10921 df-ltpq 10922 df-enq 10923 df-nq 10924 df-erq 10925 df-plq 10926 df-mq 10927 df-1nq 10928 df-rq 10929 df-ltnq 10930 df-np 10993 df-plp 10995 |
| This theorem is referenced by: ltaprlem 11056 enrer 11075 addcmpblnr 11081 mulcmpblnrlem 11082 ltsrpr 11089 addasssr 11100 mulasssr 11102 distrsr 11103 m1p1sr 11104 m1m1sr 11105 ltsosr 11106 0idsr 11109 1idsr 11110 ltasr 11112 recexsrlem 11115 mulgt0sr 11117 map2psrpr 11122 |
| Copyright terms: Public domain | W3C validator |