MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspr Structured version   Visualization version   GIF version

Theorem addasspr 11059
Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addasspr ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))

Proof of Theorem addasspr
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 11020 . 2 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
2 addclnq 10982 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 dmplp 11049 . 2 dom +P = (P × P)
4 addclpr 11055 . 2 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5 addassnq 10995 . 2 ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q ))
61, 2, 3, 4, 5genpass 11046 1 ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  (class class class)co 7430   +Q cplq 10892   +P cpp 10898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-ni 10909  df-pli 10910  df-mi 10911  df-lti 10912  df-plpq 10945  df-mpq 10946  df-ltpq 10947  df-enq 10948  df-nq 10949  df-erq 10950  df-plq 10951  df-mq 10952  df-1nq 10953  df-rq 10954  df-ltnq 10955  df-np 11018  df-plp 11020
This theorem is referenced by:  ltaprlem  11081  enrer  11100  addcmpblnr  11106  mulcmpblnrlem  11107  ltsrpr  11114  addasssr  11125  mulasssr  11127  distrsr  11128  m1p1sr  11129  m1m1sr  11130  ltsosr  11131  0idsr  11134  1idsr  11135  ltasr  11137  recexsrlem  11140  mulgt0sr  11142  map2psrpr  11147
  Copyright terms: Public domain W3C validator