Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addasspr | Structured version Visualization version GIF version |
Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addasspr | ⊢ ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp 10739 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 +Q 𝑧)}) | |
2 | addclnq 10701 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
3 | dmplp 10768 | . 2 ⊢ dom +P = (P × P) | |
4 | addclpr 10774 | . 2 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) ∈ P) | |
5 | addassnq 10714 | . 2 ⊢ ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ)) | |
6 | 1, 2, 3, 4, 5 | genpass 10765 | 1 ⊢ ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 +Q cplq 10611 +P cpp 10617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ni 10628 df-pli 10629 df-mi 10630 df-lti 10631 df-plpq 10664 df-mpq 10665 df-ltpq 10666 df-enq 10667 df-nq 10668 df-erq 10669 df-plq 10670 df-mq 10671 df-1nq 10672 df-rq 10673 df-ltnq 10674 df-np 10737 df-plp 10739 |
This theorem is referenced by: ltaprlem 10800 enrer 10819 addcmpblnr 10825 mulcmpblnrlem 10826 ltsrpr 10833 addasssr 10844 mulasssr 10846 distrsr 10847 m1p1sr 10848 m1m1sr 10849 ltsosr 10850 0idsr 10853 1idsr 10854 ltasr 10856 recexsrlem 10859 mulgt0sr 10861 map2psrpr 10866 |
Copyright terms: Public domain | W3C validator |