MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspr Structured version   Visualization version   GIF version

Theorem addasspr 11034
Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addasspr ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))

Proof of Theorem addasspr
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 10995 . 2 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
2 addclnq 10957 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 dmplp 11024 . 2 dom +P = (P × P)
4 addclpr 11030 . 2 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5 addassnq 10970 . 2 ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q ))
61, 2, 3, 4, 5genpass 11021 1 ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7403   +Q cplq 10867   +P cpp 10873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-omul 8483  df-er 8717  df-ni 10884  df-pli 10885  df-mi 10886  df-lti 10887  df-plpq 10920  df-mpq 10921  df-ltpq 10922  df-enq 10923  df-nq 10924  df-erq 10925  df-plq 10926  df-mq 10927  df-1nq 10928  df-rq 10929  df-ltnq 10930  df-np 10993  df-plp 10995
This theorem is referenced by:  ltaprlem  11056  enrer  11075  addcmpblnr  11081  mulcmpblnrlem  11082  ltsrpr  11089  addasssr  11100  mulasssr  11102  distrsr  11103  m1p1sr  11104  m1m1sr  11105  ltsosr  11106  0idsr  11109  1idsr  11110  ltasr  11112  recexsrlem  11115  mulgt0sr  11117  map2psrpr  11122
  Copyright terms: Public domain W3C validator