![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulasspr | Structured version Visualization version GIF version |
Description: Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulasspr | ⊢ ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mp 10122 | . 2 ⊢ ·P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 ·Q 𝑧)}) | |
2 | mulclnq 10085 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 ·Q 𝑧) ∈ Q) | |
3 | dmmp 10151 | . 2 ⊢ dom ·P = (P × P) | |
4 | mulclpr 10158 | . 2 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 ·P 𝑔) ∈ P) | |
5 | mulassnq 10097 | . 2 ⊢ ((𝑓 ·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔 ·Q ℎ)) | |
6 | 1, 2, 3, 4, 5 | genpass 10147 | 1 ⊢ ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 (class class class)co 6906 ·Q cmq 9994 ·P cmp 10000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-omul 7832 df-er 8010 df-ni 10010 df-mi 10012 df-lti 10013 df-mpq 10047 df-ltpq 10048 df-enq 10049 df-nq 10050 df-erq 10051 df-mq 10053 df-1nq 10054 df-rq 10055 df-ltnq 10056 df-np 10119 df-mp 10122 |
This theorem is referenced by: mulasssr 10228 |
Copyright terms: Public domain | W3C validator |