MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspr Structured version   Visualization version   GIF version

Theorem mulasspr 10937
Description: Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspr ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶))

Proof of Theorem mulasspr
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 10897 . 2 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
2 mulclnq 10860 . 2 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3 dmmp 10926 . 2 dom ·P = (P × P)
4 mulclpr 10933 . 2 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) ∈ P)
5 mulassnq 10872 . 2 ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q ))
61, 2, 3, 4, 5genpass 10922 1 ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7353   ·Q cmq 10769   ·P cmp 10775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ni 10785  df-mi 10787  df-lti 10788  df-mpq 10822  df-ltpq 10823  df-enq 10824  df-nq 10825  df-erq 10826  df-mq 10828  df-1nq 10829  df-rq 10830  df-ltnq 10831  df-np 10894  df-mp 10897
This theorem is referenced by:  mulasssr  11003
  Copyright terms: Public domain W3C validator