![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nghmplusg | Structured version Visualization version GIF version |
Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
nghmplusg.p | ⊢ + = (+g‘𝑇) |
Ref | Expression |
---|---|
nghmplusg | ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nghmrcl1 24740 | . . 3 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | |
2 | 1 | 3ad2ant2 1131 | . 2 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp) |
3 | nghmrcl2 24741 | . . 3 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | |
4 | 3 | 3ad2ant2 1131 | . 2 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑇 ∈ NrmGrp) |
5 | id 22 | . . 3 ⊢ (𝑇 ∈ Abel → 𝑇 ∈ Abel) | |
6 | nghmghm 24742 | . . 3 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
7 | nghmghm 24742 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
8 | nghmplusg.p | . . . 4 ⊢ + = (+g‘𝑇) | |
9 | 8 | ghmplusg 19844 | . . 3 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 GrpHom 𝑇)) |
10 | 5, 6, 7, 9 | syl3an 1157 | . 2 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 GrpHom 𝑇)) |
11 | eqid 2726 | . . . . 5 ⊢ (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇) | |
12 | 11 | nghmcl 24735 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ) |
13 | 12 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ) |
14 | 11 | nghmcl 24735 | . . . 4 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ) |
15 | 14 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ) |
16 | 13, 15 | readdcld 11293 | . 2 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ) |
17 | 11, 8 | nmotri 24747 | . 2 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑇)‘(𝐹 ∘f + 𝐺)) ≤ (((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺))) |
18 | 11 | bddnghm 24734 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 GrpHom 𝑇)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘(𝐹 ∘f + 𝐺)) ≤ (((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)))) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
19 | 2, 4, 10, 16, 17, 18 | syl32anc 1375 | 1 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ∘f cof 7688 ℝcr 11157 + caddc 11161 ≤ cle 11299 +gcplusg 17266 GrpHom cghm 19206 Abelcabl 19779 NrmGrpcngp 24577 normOp cnmo 24713 NGHom cnghm 24714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ico 13384 df-0g 17456 df-topgen 17458 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-ghm 19207 df-cmn 19780 df-abl 19781 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-xms 24317 df-ms 24318 df-nm 24582 df-ngp 24583 df-nmo 24716 df-nghm 24717 |
This theorem is referenced by: nmhmplusg 24765 |
Copyright terms: Public domain | W3C validator |