MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmplusg Structured version   Visualization version   GIF version

Theorem nghmplusg 23810
Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
nghmplusg.p + = (+g𝑇)
Assertion
Ref Expression
nghmplusg ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇))

Proof of Theorem nghmplusg
StepHypRef Expression
1 nghmrcl1 23802 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
213ad2ant2 1132 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
3 nghmrcl2 23803 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
433ad2ant2 1132 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑇 ∈ NrmGrp)
5 id 22 . . 3 (𝑇 ∈ Abel → 𝑇 ∈ Abel)
6 nghmghm 23804 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
7 nghmghm 23804 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
8 nghmplusg.p . . . 4 + = (+g𝑇)
98ghmplusg 19362 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇))
105, 6, 7, 9syl3an 1158 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇))
11 eqid 2738 . . . . 5 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
1211nghmcl 23797 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
13123ad2ant2 1132 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
1411nghmcl 23797 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ)
15143ad2ant3 1133 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ)
1613, 15readdcld 10935 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ)
1711, 8nmotri 23809 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑇)‘(𝐹f + 𝐺)) ≤ (((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)))
1811bddnghm 23796 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘(𝐹f + 𝐺)) ≤ (((𝑆 normOp 𝑇)‘𝐹) + ((𝑆 normOp 𝑇)‘𝐺)))) → (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇))
192, 4, 10, 16, 17, 18syl32anc 1376 1 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  f cof 7509  cr 10801   + caddc 10805  cle 10941  +gcplusg 16888   GrpHom cghm 18746  Abelcabl 19302  NrmGrpcngp 23639   normOp cnmo 23775   NGHom cnghm 23776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-ghm 18747  df-cmn 19303  df-abl 19304  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nmo 23778  df-nghm 23779
This theorem is referenced by:  nmhmplusg  23827
  Copyright terms: Public domain W3C validator