MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgneg Structured version   Visualization version   GIF version

Theorem mulgneg 18722
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
mulgneg.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 12235 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 485 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 simpl3 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
4 mulgnncl.b . . . . . 6 𝐵 = (Base‘𝐺)
5 mulgnncl.t . . . . . 6 · = (.g𝐺)
6 mulgneg.i . . . . . 6 𝐼 = (invg𝐺)
74, 5, 6mulgnegnn 18714 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
82, 3, 7syl2anc 584 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
9 simpl1 1190 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝐺 ∈ Grp)
10 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
1110, 6grpinvid 18636 . . . . . 6 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
129, 11syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(0g𝐺)) = (0g𝐺))
13 simpr 485 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑁 = 0)
1413oveq1d 7290 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
15 simpl3 1192 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑋𝐵)
164, 10, 5mulg0 18707 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1715, 16syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
1814, 17eqtrd 2778 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
1918fveq2d 6778 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(0g𝐺)))
2013negeqd 11215 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = -0)
21 neg0 11267 . . . . . . . 8 -0 = 0
2220, 21eqtrdi 2794 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = 0)
2322oveq1d 7290 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0 · 𝑋))
2423, 17eqtrd 2778 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0g𝐺))
2512, 19, 243eqtr4rd 2789 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
268, 25jaodan 955 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
271, 26sylan2b 594 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
28 simpl1 1190 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
29 simprr 770 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
3029nnzd 12425 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
31 simpl3 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
324, 5mulgcl 18721 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3328, 30, 31, 32syl3anc 1370 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
344, 6grpinvinv 18642 . . . 4 ((𝐺 ∈ Grp ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
3528, 33, 34syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
364, 5, 6mulgnegnn 18714 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
3729, 31, 36syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
38 simprl 768 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3938recnd 11003 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4039negnegd 11323 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4140oveq1d 7290 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4237, 41eqtr3d 2780 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4342fveq2d 6778 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (𝐼‘(𝑁 · 𝑋)))
4435, 43eqtr3d 2780 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
45 simp2 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
46 elznn0nn 12333 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4745, 46sylib 217 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4827, 44, 47mpjaodan 956 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  -cneg 11206  cn 11973  0cn0 12233  cz 12319  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701
This theorem is referenced by:  mulgnegneg  18723  mulgm1  18724  mulgaddcomlem  18726  mulginvcom  18728  mulgz  18731  mulgdirlem  18734  mulgdir  18735  mulgneg2  18737  mulgass  18740  mulgsubdir  18743  cycsubgcl  18825  ghmmulg  18846  odnncl  19153  gexdvds  19189  mulgdi  19428  mulgass2  19840  clmmulg  24264  archirngz  31443  archiabllem2c  31449
  Copyright terms: Public domain W3C validator