MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgneg Structured version   Visualization version   GIF version

Theorem mulgneg 19000
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
mulgneg.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 12420 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 484 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 simpl3 1194 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
4 mulgnncl.b . . . . . 6 𝐵 = (Base‘𝐺)
5 mulgnncl.t . . . . . 6 · = (.g𝐺)
6 mulgneg.i . . . . . 6 𝐼 = (invg𝐺)
74, 5, 6mulgnegnn 18992 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
82, 3, 7syl2anc 584 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
9 simpl1 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝐺 ∈ Grp)
10 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
1110, 6grpinvid 18907 . . . . . 6 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
129, 11syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(0g𝐺)) = (0g𝐺))
13 simpr 484 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑁 = 0)
1413oveq1d 7384 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
15 simpl3 1194 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑋𝐵)
164, 10, 5mulg0 18982 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1715, 16syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
1814, 17eqtrd 2764 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
1918fveq2d 6844 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(0g𝐺)))
2013negeqd 11391 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = -0)
21 neg0 11444 . . . . . . . 8 -0 = 0
2220, 21eqtrdi 2780 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = 0)
2322oveq1d 7384 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0 · 𝑋))
2423, 17eqtrd 2764 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0g𝐺))
2512, 19, 243eqtr4rd 2775 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
268, 25jaodan 959 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
271, 26sylan2b 594 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
28 simpl1 1192 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
29 simprr 772 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
3029nnzd 12532 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
31 simpl3 1194 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
324, 5mulgcl 18999 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3328, 30, 31, 32syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
344, 6grpinvinv 18913 . . . 4 ((𝐺 ∈ Grp ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
3528, 33, 34syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
364, 5, 6mulgnegnn 18992 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
3729, 31, 36syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
38 simprl 770 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3938recnd 11178 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4039negnegd 11500 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4140oveq1d 7384 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4237, 41eqtr3d 2766 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4342fveq2d 6844 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (𝐼‘(𝑁 · 𝑋)))
4435, 43eqtr3d 2766 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
45 simp2 1137 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
46 elznn0nn 12519 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4745, 46sylib 218 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4827, 44, 47mpjaodan 960 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  -cneg 11382  cn 12162  0cn0 12418  cz 12505  Basecbs 17155  0gc0g 17378  Grpcgrp 18841  invgcminusg 18842  .gcmg 18975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-mulg 18976
This theorem is referenced by:  mulgnegneg  19001  mulgm1  19002  mulgaddcomlem  19005  mulginvcom  19007  mulgz  19010  mulgdirlem  19013  mulgdir  19014  mulgneg2  19016  mulgass  19019  mulgsubdir  19022  cycsubgcl  19114  ghmmulg  19136  odnncl  19451  gexdvds  19490  mulgdi  19732  mulgass2  20194  clmmulg  24977  archirngz  33116  archiabllem2c  33122  primrootscoprbij  42063  aks6d1c6isolem1  42135
  Copyright terms: Public domain W3C validator