| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgz | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgz | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18872 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd) |
| 3 | mulgnn0z.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0z.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnn0z 19033 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 7 | 2, 6 | sylan 580 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 8 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp) | |
| 9 | nn0z 12554 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ) |
| 11 | 3, 5 | grpidcl 18897 | . . . . 5 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 12 | 11 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0 ∈ 𝐵) |
| 13 | eqid 2729 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 14 | 3, 4, 13 | mulgneg 19024 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0 ∈ 𝐵) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 15 | 8, 10, 12, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 16 | zcn 12534 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 16 | ad2antlr 727 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 18 | 17 | negnegd 11524 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁) |
| 19 | 18 | oveq1d 7402 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 )) |
| 20 | 3, 4, 5 | mulgnn0z 19033 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 21 | 2, 20 | sylan 580 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 22 | 21 | fveq2d 6862 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = ((invg‘𝐺)‘ 0 )) |
| 23 | 5, 13 | grpinvid 18931 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 24 | 23 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 25 | 22, 24 | eqtrd 2764 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = 0 ) |
| 26 | 15, 19, 25 | 3eqtr3d 2772 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 27 | elznn0 12544 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 28 | 27 | simprbi 496 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 29 | 28 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 30 | 7, 26, 29 | mpjaodan 960 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 -cneg 11406 ℕ0cn0 12442 ℤcz 12529 Basecbs 17179 0gc0g 17402 Mndcmnd 18661 Grpcgrp 18865 invgcminusg 18866 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-mulg 19000 |
| This theorem is referenced by: mulgmodid 19045 odmod 19476 gexdvdsi 19513 primrootscoprmpow 42087 primrootscoprbij 42090 primrootspoweq0 42094 aks6d1c6lem5 42165 grpods 42182 unitscyglem1 42183 unitscyglem4 42186 |
| Copyright terms: Public domain | W3C validator |