| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgz | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgz | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18923 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd) |
| 3 | mulgnn0z.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0z.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnn0z 19084 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 7 | 2, 6 | sylan 580 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 8 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp) | |
| 9 | nn0z 12613 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ) |
| 11 | 3, 5 | grpidcl 18948 | . . . . 5 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 12 | 11 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0 ∈ 𝐵) |
| 13 | eqid 2735 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 14 | 3, 4, 13 | mulgneg 19075 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0 ∈ 𝐵) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 15 | 8, 10, 12, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 16 | zcn 12593 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 16 | ad2antlr 727 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 18 | 17 | negnegd 11585 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁) |
| 19 | 18 | oveq1d 7420 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 )) |
| 20 | 3, 4, 5 | mulgnn0z 19084 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 21 | 2, 20 | sylan 580 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 22 | 21 | fveq2d 6880 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = ((invg‘𝐺)‘ 0 )) |
| 23 | 5, 13 | grpinvid 18982 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 24 | 23 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 25 | 22, 24 | eqtrd 2770 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = 0 ) |
| 26 | 15, 19, 25 | 3eqtr3d 2778 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 27 | elznn0 12603 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 28 | 27 | simprbi 496 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 29 | 28 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 30 | 7, 26, 29 | mpjaodan 960 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 -cneg 11467 ℕ0cn0 12501 ℤcz 12588 Basecbs 17228 0gc0g 17453 Mndcmnd 18712 Grpcgrp 18916 invgcminusg 18917 .gcmg 19050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-mulg 19051 |
| This theorem is referenced by: mulgmodid 19096 odmod 19527 gexdvdsi 19564 primrootscoprmpow 42112 primrootscoprbij 42115 primrootspoweq0 42119 aks6d1c6lem5 42190 grpods 42207 unitscyglem1 42208 unitscyglem4 42211 |
| Copyright terms: Public domain | W3C validator |