| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgz | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgz | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18819 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd) |
| 3 | mulgnn0z.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0z.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnn0z 18980 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 7 | 2, 6 | sylan 580 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 8 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp) | |
| 9 | nn0z 12496 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ) |
| 11 | 3, 5 | grpidcl 18844 | . . . . 5 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 12 | 11 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0 ∈ 𝐵) |
| 13 | eqid 2729 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 14 | 3, 4, 13 | mulgneg 18971 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0 ∈ 𝐵) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 15 | 8, 10, 12, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 16 | zcn 12476 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 16 | ad2antlr 727 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 18 | 17 | negnegd 11466 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁) |
| 19 | 18 | oveq1d 7364 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 )) |
| 20 | 3, 4, 5 | mulgnn0z 18980 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 21 | 2, 20 | sylan 580 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 22 | 21 | fveq2d 6826 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = ((invg‘𝐺)‘ 0 )) |
| 23 | 5, 13 | grpinvid 18878 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 24 | 23 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 25 | 22, 24 | eqtrd 2764 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = 0 ) |
| 26 | 15, 19, 25 | 3eqtr3d 2772 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 27 | elznn0 12486 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 28 | 27 | simprbi 496 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 29 | 28 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 30 | 7, 26, 29 | mpjaodan 960 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 -cneg 11348 ℕ0cn0 12384 ℤcz 12471 Basecbs 17120 0gc0g 17343 Mndcmnd 18608 Grpcgrp 18812 invgcminusg 18813 .gcmg 18946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-mulg 18947 |
| This theorem is referenced by: mulgmodid 18992 odmod 19425 gexdvdsi 19462 primrootscoprmpow 42076 primrootscoprbij 42079 primrootspoweq0 42083 aks6d1c6lem5 42154 grpods 42171 unitscyglem1 42172 unitscyglem4 42175 |
| Copyright terms: Public domain | W3C validator |