| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgz | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgz | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18853 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd) |
| 3 | mulgnn0z.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0z.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnn0z 19014 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 7 | 2, 6 | sylan 580 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 8 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp) | |
| 9 | nn0z 12493 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ) |
| 11 | 3, 5 | grpidcl 18878 | . . . . 5 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 12 | 11 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0 ∈ 𝐵) |
| 13 | eqid 2731 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 14 | 3, 4, 13 | mulgneg 19005 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0 ∈ 𝐵) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 15 | 8, 10, 12, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
| 16 | zcn 12473 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 16 | ad2antlr 727 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 18 | 17 | negnegd 11463 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁) |
| 19 | 18 | oveq1d 7361 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 )) |
| 20 | 3, 4, 5 | mulgnn0z 19014 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 21 | 2, 20 | sylan 580 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
| 22 | 21 | fveq2d 6826 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = ((invg‘𝐺)‘ 0 )) |
| 23 | 5, 13 | grpinvid 18912 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 24 | 23 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 25 | 22, 24 | eqtrd 2766 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = 0 ) |
| 26 | 15, 19, 25 | 3eqtr3d 2774 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| 27 | elznn0 12483 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 28 | 27 | simprbi 496 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 29 | 28 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
| 30 | 7, 26, 29 | mpjaodan 960 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 -cneg 11345 ℕ0cn0 12381 ℤcz 12468 Basecbs 17120 0gc0g 17343 Mndcmnd 18642 Grpcgrp 18846 invgcminusg 18847 .gcmg 18980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-mulg 18981 |
| This theorem is referenced by: mulgmodid 19026 odmod 19458 gexdvdsi 19495 primrootscoprmpow 42202 primrootscoprbij 42205 primrootspoweq0 42209 aks6d1c6lem5 42280 grpods 42297 unitscyglem1 42298 unitscyglem4 42301 |
| Copyright terms: Public domain | W3C validator |