![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elharval | Structured version Visualization version GIF version |
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9556, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elharval | β’ (π β (harβπ) β (π β On β§ π βΌ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6929 | . 2 β’ (π β (harβπ) β π β V) | |
2 | reldom 8947 | . . . 4 β’ Rel βΌ | |
3 | 2 | brrelex2i 5733 | . . 3 β’ (π βΌ π β π β V) |
4 | 3 | adantl 482 | . 2 β’ ((π β On β§ π βΌ π) β π β V) |
5 | harval 9557 | . . . 4 β’ (π β V β (harβπ) = {π¦ β On β£ π¦ βΌ π}) | |
6 | 5 | eleq2d 2819 | . . 3 β’ (π β V β (π β (harβπ) β π β {π¦ β On β£ π¦ βΌ π})) |
7 | breq1 5151 | . . . 4 β’ (π¦ = π β (π¦ βΌ π β π βΌ π)) | |
8 | 7 | elrab 3683 | . . 3 β’ (π β {π¦ β On β£ π¦ βΌ π} β (π β On β§ π βΌ π)) |
9 | 6, 8 | bitrdi 286 | . 2 β’ (π β V β (π β (harβπ) β (π β On β§ π βΌ π))) |
10 | 1, 4, 9 | pm5.21nii 379 | 1 β’ (π β (harβπ) β (π β On β§ π βΌ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 β wcel 2106 {crab 3432 Vcvv 3474 class class class wbr 5148 Oncon0 6364 βcfv 6543 βΌ cdom 8939 harchar 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-en 8942 df-dom 8943 df-oi 9507 df-har 9554 |
This theorem is referenced by: harndom 9559 harcard 9975 cardprclem 9976 cardaleph 10086 dfac12lem2 10141 hsmexlem1 10423 pwcfsdom 10580 pwfseqlem5 10660 hargch 10670 harinf 41855 harn0 41926 |
Copyright terms: Public domain | W3C validator |