MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elharval Structured version   Visualization version   GIF version

Theorem elharval 9456
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9454, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elharval (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))

Proof of Theorem elharval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6865 . 2 (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V)
2 reldom 8883 . . . 4 Rel ≼
32brrelex2i 5678 . . 3 (𝑌𝑋𝑋 ∈ V)
43adantl 481 . 2 ((𝑌 ∈ On ∧ 𝑌𝑋) → 𝑋 ∈ V)
5 harval 9455 . . . 4 (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
65eleq2d 2819 . . 3 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋}))
7 breq1 5098 . . . 4 (𝑦 = 𝑌 → (𝑦𝑋𝑌𝑋))
87elrab 3643 . . 3 (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋} ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
96, 8bitrdi 287 . 2 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋)))
101, 4, 9pm5.21nii 378 1 (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5095  Oncon0 6313  cfv 6488  cdom 8875  harchar 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-en 8878  df-dom 8879  df-oi 9405  df-har 9452
This theorem is referenced by:  harndom  9457  harcard  9880  cardprclem  9881  cardaleph  9989  dfac12lem2  10045  hsmexlem1  10326  pwcfsdom  10483  pwfseqlem5  10563  hargch  10573  harinf  43154  harn0  43222
  Copyright terms: Public domain W3C validator