![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elharval | Structured version Visualization version GIF version |
Description: The Hartogs number of a set is greater than all ordinals which inject into it. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elharval | ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6530 | . 2 ⊢ (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V) | |
2 | reldom 8310 | . . . 4 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5455 | . . 3 ⊢ (𝑌 ≼ 𝑋 → 𝑋 ∈ V) |
4 | 3 | adantl 474 | . 2 ⊢ ((𝑌 ∈ On ∧ 𝑌 ≼ 𝑋) → 𝑋 ∈ V) |
5 | harval 8819 | . . . 4 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
6 | 5 | eleq2d 2844 | . . 3 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋})) |
7 | breq1 4928 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≼ 𝑋 ↔ 𝑌 ≼ 𝑋)) | |
8 | 7 | elrab 3588 | . . 3 ⊢ (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
9 | 6, 8 | syl6bb 279 | . 2 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋))) |
10 | 1, 4, 9 | pm5.21nii 371 | 1 ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∈ wcel 2051 {crab 3085 Vcvv 3408 class class class wbr 4925 Oncon0 6026 ‘cfv 6185 ≼ cdom 8302 harchar 8813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-wrecs 7748 df-recs 7810 df-en 8305 df-dom 8306 df-oi 8767 df-har 8815 |
This theorem is referenced by: harndom 8821 harcard 9199 cardprclem 9200 cardaleph 9307 dfac12lem2 9362 hsmexlem1 9644 pwcfsdom 9801 pwfseqlem5 9881 hargch 9891 harinf 39065 harn0 39136 |
Copyright terms: Public domain | W3C validator |