MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elharval Structured version   Visualization version   GIF version

Theorem elharval 9558
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9556, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elharval (π‘Œ ∈ (harβ€˜π‘‹) ↔ (π‘Œ ∈ On ∧ π‘Œ β‰Ό 𝑋))

Proof of Theorem elharval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6929 . 2 (π‘Œ ∈ (harβ€˜π‘‹) β†’ 𝑋 ∈ V)
2 reldom 8947 . . . 4 Rel β‰Ό
32brrelex2i 5733 . . 3 (π‘Œ β‰Ό 𝑋 β†’ 𝑋 ∈ V)
43adantl 482 . 2 ((π‘Œ ∈ On ∧ π‘Œ β‰Ό 𝑋) β†’ 𝑋 ∈ V)
5 harval 9557 . . . 4 (𝑋 ∈ V β†’ (harβ€˜π‘‹) = {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝑋})
65eleq2d 2819 . . 3 (𝑋 ∈ V β†’ (π‘Œ ∈ (harβ€˜π‘‹) ↔ π‘Œ ∈ {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝑋}))
7 breq1 5151 . . . 4 (𝑦 = π‘Œ β†’ (𝑦 β‰Ό 𝑋 ↔ π‘Œ β‰Ό 𝑋))
87elrab 3683 . . 3 (π‘Œ ∈ {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝑋} ↔ (π‘Œ ∈ On ∧ π‘Œ β‰Ό 𝑋))
96, 8bitrdi 286 . 2 (𝑋 ∈ V β†’ (π‘Œ ∈ (harβ€˜π‘‹) ↔ (π‘Œ ∈ On ∧ π‘Œ β‰Ό 𝑋)))
101, 4, 9pm5.21nii 379 1 (π‘Œ ∈ (harβ€˜π‘‹) ↔ (π‘Œ ∈ On ∧ π‘Œ β‰Ό 𝑋))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∈ wcel 2106  {crab 3432  Vcvv 3474   class class class wbr 5148  Oncon0 6364  β€˜cfv 6543   β‰Ό cdom 8939  harchar 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-en 8942  df-dom 8943  df-oi 9507  df-har 9554
This theorem is referenced by:  harndom  9559  harcard  9975  cardprclem  9976  cardaleph  10086  dfac12lem2  10141  hsmexlem1  10423  pwcfsdom  10580  pwfseqlem5  10660  hargch  10670  harinf  41855  harn0  41926
  Copyright terms: Public domain W3C validator