| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elharval | Structured version Visualization version GIF version | ||
| Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9445, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| elharval | ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6857 | . 2 ⊢ (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V) | |
| 2 | reldom 8875 | . . . 4 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5673 | . . 3 ⊢ (𝑌 ≼ 𝑋 → 𝑋 ∈ V) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑌 ∈ On ∧ 𝑌 ≼ 𝑋) → 𝑋 ∈ V) |
| 5 | harval 9446 | . . . 4 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
| 6 | 5 | eleq2d 2817 | . . 3 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋})) |
| 7 | breq1 5094 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≼ 𝑋 ↔ 𝑌 ≼ 𝑋)) | |
| 8 | 7 | elrab 3647 | . . 3 ⊢ (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
| 9 | 6, 8 | bitrdi 287 | . 2 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋))) |
| 10 | 1, 4, 9 | pm5.21nii 378 | 1 ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5091 Oncon0 6306 ‘cfv 6481 ≼ cdom 8867 harchar 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-en 8870 df-dom 8871 df-oi 9396 df-har 9443 |
| This theorem is referenced by: harndom 9448 harcard 9871 cardprclem 9872 cardaleph 9980 dfac12lem2 10036 hsmexlem1 10317 pwcfsdom 10474 pwfseqlem5 10554 hargch 10564 harinf 43073 harn0 43141 |
| Copyright terms: Public domain | W3C validator |