MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elharval Structured version   Visualization version   GIF version

Theorem elharval 9521
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9519, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elharval (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))

Proof of Theorem elharval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6899 . 2 (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V)
2 reldom 8927 . . . 4 Rel ≼
32brrelex2i 5698 . . 3 (𝑌𝑋𝑋 ∈ V)
43adantl 481 . 2 ((𝑌 ∈ On ∧ 𝑌𝑋) → 𝑋 ∈ V)
5 harval 9520 . . . 4 (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
65eleq2d 2815 . . 3 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋}))
7 breq1 5113 . . . 4 (𝑦 = 𝑌 → (𝑦𝑋𝑌𝑋))
87elrab 3662 . . 3 (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋} ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
96, 8bitrdi 287 . 2 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋)))
101, 4, 9pm5.21nii 378 1 (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5110  Oncon0 6335  cfv 6514  cdom 8919  harchar 9516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-en 8922  df-dom 8923  df-oi 9470  df-har 9517
This theorem is referenced by:  harndom  9522  harcard  9938  cardprclem  9939  cardaleph  10049  dfac12lem2  10105  hsmexlem1  10386  pwcfsdom  10543  pwfseqlem5  10623  hargch  10633  harinf  43030  harn0  43098
  Copyright terms: Public domain W3C validator