MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elharval Structured version   Visualization version   GIF version

Theorem elharval 9281
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9279, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elharval (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))

Proof of Theorem elharval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6801 . 2 (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V)
2 reldom 8713 . . . 4 Rel ≼
32brrelex2i 5643 . . 3 (𝑌𝑋𝑋 ∈ V)
43adantl 481 . 2 ((𝑌 ∈ On ∧ 𝑌𝑋) → 𝑋 ∈ V)
5 harval 9280 . . . 4 (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
65eleq2d 2825 . . 3 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋}))
7 breq1 5081 . . . 4 (𝑦 = 𝑌 → (𝑦𝑋𝑌𝑋))
87elrab 3625 . . 3 (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋} ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
96, 8bitrdi 286 . 2 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋)))
101, 4, 9pm5.21nii 379 1 (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2109  {crab 3069  Vcvv 3430   class class class wbr 5078  Oncon0 6263  cfv 6430  cdom 8705  harchar 9276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-en 8708  df-dom 8709  df-oi 9230  df-har 9277
This theorem is referenced by:  harndom  9282  harcard  9720  cardprclem  9721  cardaleph  9829  dfac12lem2  9884  hsmexlem1  10166  pwcfsdom  10323  pwfseqlem5  10403  hargch  10413  harinf  40836  harn0  40907
  Copyright terms: Public domain W3C validator