Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elharval | Structured version Visualization version GIF version |
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9279, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elharval | ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6801 | . 2 ⊢ (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V) | |
2 | reldom 8713 | . . . 4 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5643 | . . 3 ⊢ (𝑌 ≼ 𝑋 → 𝑋 ∈ V) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝑌 ∈ On ∧ 𝑌 ≼ 𝑋) → 𝑋 ∈ V) |
5 | harval 9280 | . . . 4 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
6 | 5 | eleq2d 2825 | . . 3 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋})) |
7 | breq1 5081 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≼ 𝑋 ↔ 𝑌 ≼ 𝑋)) | |
8 | 7 | elrab 3625 | . . 3 ⊢ (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
9 | 6, 8 | bitrdi 286 | . 2 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋))) |
10 | 1, 4, 9 | pm5.21nii 379 | 1 ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 {crab 3069 Vcvv 3430 class class class wbr 5078 Oncon0 6263 ‘cfv 6430 ≼ cdom 8705 harchar 9276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-en 8708 df-dom 8709 df-oi 9230 df-har 9277 |
This theorem is referenced by: harndom 9282 harcard 9720 cardprclem 9721 cardaleph 9829 dfac12lem2 9884 hsmexlem1 10166 pwcfsdom 10323 pwfseqlem5 10403 hargch 10413 harinf 40836 harn0 40907 |
Copyright terms: Public domain | W3C validator |