MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elharval Structured version   Visualization version   GIF version

Theorem elharval 9580
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9578, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elharval (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))

Proof of Theorem elharval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6919 . 2 (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V)
2 reldom 8970 . . . 4 Rel ≼
32brrelex2i 5716 . . 3 (𝑌𝑋𝑋 ∈ V)
43adantl 481 . 2 ((𝑌 ∈ On ∧ 𝑌𝑋) → 𝑋 ∈ V)
5 harval 9579 . . . 4 (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
65eleq2d 2821 . . 3 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋}))
7 breq1 5127 . . . 4 (𝑦 = 𝑌 → (𝑦𝑋𝑌𝑋))
87elrab 3676 . . 3 (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦𝑋} ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
96, 8bitrdi 287 . 2 (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋)))
101, 4, 9pm5.21nii 378 1 (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  {crab 3420  Vcvv 3464   class class class wbr 5124  Oncon0 6357  cfv 6536  cdom 8962  harchar 9575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-en 8965  df-dom 8966  df-oi 9529  df-har 9576
This theorem is referenced by:  harndom  9581  harcard  9997  cardprclem  9998  cardaleph  10108  dfac12lem2  10164  hsmexlem1  10445  pwcfsdom  10602  pwfseqlem5  10682  hargch  10692  harinf  43025  harn0  43093
  Copyright terms: Public domain W3C validator