Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elharval | Structured version Visualization version GIF version |
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9408, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elharval | ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6857 | . 2 ⊢ (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V) | |
2 | reldom 8802 | . . . 4 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5669 | . . 3 ⊢ (𝑌 ≼ 𝑋 → 𝑋 ∈ V) |
4 | 3 | adantl 482 | . 2 ⊢ ((𝑌 ∈ On ∧ 𝑌 ≼ 𝑋) → 𝑋 ∈ V) |
5 | harval 9409 | . . . 4 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
6 | 5 | eleq2d 2822 | . . 3 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋})) |
7 | breq1 5092 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≼ 𝑋 ↔ 𝑌 ≼ 𝑋)) | |
8 | 7 | elrab 3634 | . . 3 ⊢ (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
9 | 6, 8 | bitrdi 286 | . 2 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋))) |
10 | 1, 4, 9 | pm5.21nii 379 | 1 ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2105 {crab 3403 Vcvv 3441 class class class wbr 5089 Oncon0 6296 ‘cfv 6473 ≼ cdom 8794 harchar 9405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-en 8797 df-dom 8798 df-oi 9359 df-har 9406 |
This theorem is referenced by: harndom 9411 harcard 9827 cardprclem 9828 cardaleph 9938 dfac12lem2 9993 hsmexlem1 10275 pwcfsdom 10432 pwfseqlem5 10512 hargch 10522 harinf 41107 harn0 41178 |
Copyright terms: Public domain | W3C validator |