Colors of
variables: wff
setvar class |
Syntax hints:
∈ wcel 2106 ℂcc 11110
1c1 11113 -cneg 11449 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 |
This theorem is referenced by: m1expcl2
14055 m1expeven
14079 iseraltlem2
15633 iseraltlem3
15634 fsumneg
15737 incexclem
15786 incexc
15787 risefallfac
15972 fallrisefac
15973 fallfac0
15976 0risefac
15986 binomrisefac
15990 n2dvdsm1
16316 m1expo
16322 m1exp1
16323 pwp1fsum
16338 bitsfzo
16380 bezoutlem1
16485 psgnunilem4
19406 m1expaddsub
19407 psgnuni
19408 psgnpmtr
19419 psgn0fv0
19420 psgnsn
19429 psgnprfval1
19431 cnmsgnsubg
21349 cnmsgnbas
21350 cnmsgngrp
21351 psgnghm
21352 psgninv
21354 mdetralt
22330 negcncf
24662 dvmptneg
25707 dvlipcn
25735 lhop2
25756 plysubcl
25960 coesub
25995 dgrsub
26010 quotlem
26037 quotcl2
26039 quotdgr
26040 iaa
26062 dvradcnv
26157 efipi
26207 eulerid
26208 sin2pi
26209 sinmpi
26221 cosmpi
26222 sinppi
26223 cosppi
26224 efif1olem2
26276 logneg
26320 lognegb
26322 logtayl
26392 logtayl2
26394 root1id
26486 root1eq1
26487 root1cj
26488 cxpeq
26489 angneg
26532 ang180lem1
26538 1cubrlem
26570 1cubr
26571 atandm4
26608 atandmtan
26649 atantayl3
26668 leibpi
26671 log2cnv
26673 wilthlem1
26796 wilthlem2
26797 basellem2
26810 basellem5
26813 basellem9
26817 isnsqf
26863 mule1
26876 mumul
26909 musum
26919 ppiub
26931 dchrptlem1
26991 dchrptlem2
26992 lgsneg
27048 lgsdilem
27051 lgsdir2lem3
27054 lgsdir2lem4
27055 lgsdir2
27057 lgsdir
27059 lgsdi
27061 lgsne0
27062 gausslemma2dlem5
27098 gausslemma2d
27101 lgseisenlem1
27102 lgseisenlem2
27103 lgseisenlem4
27105 lgseisen
27106 lgsquadlem1
27107 lgsquadlem2
27108 lgsquadlem3
27109 lgsquad2lem1
27111 lgsquad2lem2
27112 lgsquad3
27114 m1lgs
27115 addsqn2reu
27168 addsqrexnreu
27169 dchrisum0flblem1
27235 rpvmasum2
27239 axlowdimlem13
28467 vcm
30084 nvinvfval
30148 nvmval2
30151 nvmf
30153 nvmdi
30156 nvnegneg
30157 nvpncan2
30161 nvaddsub4
30165 nvm1
30173 nvdif
30174 nvmtri
30179 nvabs
30180 nvge0
30181 nvnd
30196 imsmetlem
30198 smcnlem
30205 vmcn
30207 ipval2
30215 4ipval2
30216 ipval3
30217 dipcj
30222 dip0r
30225 sspmval
30241 lno0
30264 lnosub
30267 ip0i
30333 ipdirilem
30337 ipasslem2
30340 ipasslem10
30347 dipsubdir
30356 hvsubf
30523 hvsubcl
30525 hvsubid
30534 hv2neg
30536 hvm1neg
30540 hvaddsubval
30541 hvsub4
30545 hvaddsub12
30546 hvpncan
30547 hvaddsubass
30549 hvsubass
30552 hvsubdistr1
30557 hvsubdistr2
30558 hvsubsub4i
30567 hvnegdii
30570 hvsubeq0i
30571 hvsubcan2i
30572 hvaddcani
30573 hvsubaddi
30574 hvaddeq0
30577 hvsubcan
30582 hvsubcan2
30583 hvsub0
30584 his2sub
30600 hisubcomi
30612 normlem0
30617 normlem9
30626 normsubi
30649 norm3difi
30655 normpar2i
30664 hilablo
30668 shsubcl
30728 hhssabloilem
30769 shsel3
30823 pjsubii
31186 pjssmii
31189 honegsubi
31304 honegneg
31314 hosubneg
31315 hosubdi
31316 honegdi
31317 honegsubdi
31318 honegsubdi2
31319 hosub4
31321 hosubsub4
31326 hosubeq0i
31334 nmopnegi
31473 lnopsubi
31482 lnophdi
31510 lnophmlem2
31525 lnfnsubi
31554 bdophdi
31605 nmoptri2i
31607 superpos
31862 cdj1i
31941 cdj3lem1
31942 psgnid
32514 psgnfzto1st
32522 cnmsgn0g
32563 altgnsg
32566 qqhval2lem
33247 sgnmul
33827 signswch
33858 signlem0
33884 subfacval2
34464 subfaclim
34465 quad3
34941 fwddifn0
35428 fwddifnp1
35429 gg-negcncf
35452 lcmineqlem1
41200 lcmineqlem2
41201 lcmineqlem8
41207 2xp3dxp2ge1d
41328 negexpidd
41722 rmym1
41976 proot1ex
42245 sqrtcval2
42695 expgrowth
43396 climneg
44625 dirkertrigeqlem1
45113 dirkertrigeqlem3
45115 fourierdlem24
45146 sqwvfourb
45244 fourierswlem
45245 fouriersw
45246 2pwp1prm
46556 3exp4mod41
46583 41prothprmlem2
46585 m1expevenALTV
46614 m1expoddALTV
46615 0nodd
46847 altgsumbc
47117 altgsumbcALT
47118 |