![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccshftri | Structured version Visualization version GIF version |
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iccshftri.1 | ⊢ 𝐴 ∈ ℝ |
iccshftri.2 | ⊢ 𝐵 ∈ ℝ |
iccshftri.3 | ⊢ 𝑅 ∈ ℝ |
iccshftri.4 | ⊢ (𝐴 + 𝑅) = 𝐶 |
iccshftri.5 | ⊢ (𝐵 + 𝑅) = 𝐷 |
Ref | Expression |
---|---|
iccshftri | ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccshftri.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
2 | iccshftri.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
3 | iccssre 13491 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | . . 3 ⊢ (𝐴[,]𝐵) ⊆ ℝ |
5 | 4 | sseli 4004 | . 2 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ) |
6 | iccshftri.3 | . . . 4 ⊢ 𝑅 ∈ ℝ | |
7 | iccshftri.4 | . . . . . 6 ⊢ (𝐴 + 𝑅) = 𝐶 | |
8 | iccshftri.5 | . . . . . 6 ⊢ (𝐵 + 𝑅) = 𝐷 | |
9 | 7, 8 | iccshftr 13548 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
10 | 1, 2, 9 | mpanl12 701 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
11 | 6, 10 | mpan2 690 | . . 3 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
12 | 11 | biimpd 229 | . 2 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
13 | 5, 12 | mpcom 38 | 1 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 (class class class)co 7450 ℝcr 11185 + caddc 11189 [,]cicc 13412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-icc 13416 |
This theorem is referenced by: pcoass 25078 |
Copyright terms: Public domain | W3C validator |