| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | coeeq.1 | . . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 2 |  | coeval 26263 | . . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | 
| 3 | 1, 2 | syl 17 | . 2
⊢ (𝜑 → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | 
| 4 |  | coeeq.2 | . . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 5 |  | coeeq.4 | . . . 4
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 6 |  | coeeq.5 | . . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 7 |  | fvoveq1 7455 | . . . . . . . 8
⊢ (𝑛 = 𝑁 → (ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘(𝑁 + 1))) | 
| 8 | 7 | imaeq2d 6077 | . . . . . . 7
⊢ (𝑛 = 𝑁 → (𝐴 “
(ℤ≥‘(𝑛 + 1))) = (𝐴 “
(ℤ≥‘(𝑁 + 1)))) | 
| 9 | 8 | eqeq1d 2738 | . . . . . 6
⊢ (𝑛 = 𝑁 → ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ↔ (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0})) | 
| 10 |  | oveq2 7440 | . . . . . . . . 9
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | 
| 11 | 10 | sumeq1d 15737 | . . . . . . . 8
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 12 | 11 | mpteq2dv 5243 | . . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 13 | 12 | eqeq2d 2747 | . . . . . 6
⊢ (𝑛 = 𝑁 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) | 
| 14 | 9, 13 | anbi12d 632 | . . . . 5
⊢ (𝑛 = 𝑁 → (((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))))) | 
| 15 | 14 | rspcev 3621 | . . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ((𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) → ∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))))) | 
| 16 | 4, 5, 6, 15 | syl12anc 836 | . . 3
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))))) | 
| 17 |  | coeeq.3 | . . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 18 |  | cnex 11237 | . . . . . 6
⊢ ℂ
∈ V | 
| 19 |  | nn0ex 12534 | . . . . . 6
⊢
ℕ0 ∈ V | 
| 20 | 18, 19 | elmap 8912 | . . . . 5
⊢ (𝐴 ∈ (ℂ
↑m ℕ0) ↔ 𝐴:ℕ0⟶ℂ) | 
| 21 | 17, 20 | sylibr 234 | . . . 4
⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m
ℕ0)) | 
| 22 |  | coeeu 26265 | . . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | 
| 23 | 1, 22 | syl 17 | . . . 4
⊢ (𝜑 → ∃!𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | 
| 24 |  | imaeq1 6072 | . . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = (𝐴 “
(ℤ≥‘(𝑛 + 1)))) | 
| 25 | 24 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ (𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0})) | 
| 26 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | 
| 27 | 26 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 28 | 27 | sumeq2sdv 15740 | . . . . . . . . 9
⊢ (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 29 | 28 | mpteq2dv 5243 | . . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 30 | 29 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑎 = 𝐴 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))))) | 
| 31 | 25, 30 | anbi12d 632 | . . . . . 6
⊢ (𝑎 = 𝐴 → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))))) | 
| 32 | 31 | rexbidv 3178 | . . . . 5
⊢ (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))))) | 
| 33 | 32 | riota2 7414 | . . . 4
⊢ ((𝐴 ∈ (ℂ
↑m ℕ0) ∧ ∃!𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → (∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) ↔ (℩𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = 𝐴)) | 
| 34 | 21, 23, 33 | syl2anc 584 | . . 3
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) ↔ (℩𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = 𝐴)) | 
| 35 | 16, 34 | mpbid 232 | . 2
⊢ (𝜑 → (℩𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = 𝐴) | 
| 36 | 3, 35 | eqtrd 2776 | 1
⊢ (𝜑 → (coeff‘𝐹) = 𝐴) |