MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq Structured version   Visualization version   GIF version

Theorem coeeq 26189
Description: If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
coeeq.1 (𝜑𝐹 ∈ (Poly‘𝑆))
coeeq.2 (𝜑𝑁 ∈ ℕ0)
coeeq.3 (𝜑𝐴:ℕ0⟶ℂ)
coeeq.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
coeeq.5 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeeq (𝜑 → (coeff‘𝐹) = 𝐴)
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeeq.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 coeval 26185 . . 3 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
31, 2syl 17 . 2 (𝜑 → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
4 coeeq.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
5 coeeq.4 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
6 coeeq.5 . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
7 fvoveq1 7433 . . . . . . . 8 (𝑛 = 𝑁 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑁 + 1)))
87imaeq2d 6052 . . . . . . 7 (𝑛 = 𝑁 → (𝐴 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑁 + 1))))
98eqeq1d 2738 . . . . . 6 (𝑛 = 𝑁 → ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}))
10 oveq2 7418 . . . . . . . . 9 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1110sumeq1d 15721 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
1211mpteq2dv 5220 . . . . . . 7 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
1312eqeq2d 2747 . . . . . 6 (𝑛 = 𝑁 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
149, 13anbi12d 632 . . . . 5 (𝑛 = 𝑁 → (((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))))
1514rspcev 3606 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))) → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
164, 5, 6, 15syl12anc 836 . . 3 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
17 coeeq.3 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
18 cnex 11215 . . . . . 6 ℂ ∈ V
19 nn0ex 12512 . . . . . 6 0 ∈ V
2018, 19elmap 8890 . . . . 5 (𝐴 ∈ (ℂ ↑m0) ↔ 𝐴:ℕ0⟶ℂ)
2117, 20sylibr 234 . . . 4 (𝜑𝐴 ∈ (ℂ ↑m0))
22 coeeu 26187 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
231, 22syl 17 . . . 4 (𝜑 → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
24 imaeq1 6047 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑛 + 1))))
2524eqeq1d 2738 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑛 + 1))) = {0}))
26 fveq1 6880 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2726oveq1d 7425 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2827sumeq2sdv 15724 . . . . . . . . 9 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))
2928mpteq2dv 5220 . . . . . . . 8 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))
3029eqeq2d 2747 . . . . . . 7 (𝑎 = 𝐴 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
3125, 30anbi12d 632 . . . . . 6 (𝑎 = 𝐴 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3231rexbidv 3165 . . . . 5 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3332riota2 7392 . . . 4 ((𝐴 ∈ (ℂ ↑m0) ∧ ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3421, 23, 33syl2anc 584 . . 3 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3516, 34mpbid 232 . 2 (𝜑 → (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴)
363, 35eqtrd 2771 1 (𝜑 → (coeff‘𝐹) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  ∃!wreu 3362  {csn 4606  cmpt 5206  cima 5662  wf 6532  cfv 6536  crio 7366  (class class class)co 7410  m cmap 8845  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506  cuz 12857  ...cfz 13529  cexp 14084  Σcsu 15707  Polycply 26146  coeffccoe 26148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152
This theorem is referenced by:  dgrlem  26191  coeidlem  26199  coeeq2  26204  dgreq  26206  coeaddlem  26211  coemullem  26212  coe1termlem  26220  coecj  26241  coecjOLD  26243  basellem2  27049  aacllem  49632
  Copyright terms: Public domain W3C validator