MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq Structured version   Visualization version   GIF version

Theorem coeeq 25293
Description: If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
coeeq.1 (𝜑𝐹 ∈ (Poly‘𝑆))
coeeq.2 (𝜑𝑁 ∈ ℕ0)
coeeq.3 (𝜑𝐴:ℕ0⟶ℂ)
coeeq.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
coeeq.5 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeeq (𝜑 → (coeff‘𝐹) = 𝐴)
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeeq.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 coeval 25289 . . 3 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
31, 2syl 17 . 2 (𝜑 → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
4 coeeq.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
5 coeeq.4 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
6 coeeq.5 . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
7 fvoveq1 7278 . . . . . . . 8 (𝑛 = 𝑁 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑁 + 1)))
87imaeq2d 5958 . . . . . . 7 (𝑛 = 𝑁 → (𝐴 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑁 + 1))))
98eqeq1d 2740 . . . . . 6 (𝑛 = 𝑁 → ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}))
10 oveq2 7263 . . . . . . . . 9 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1110sumeq1d 15341 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
1211mpteq2dv 5172 . . . . . . 7 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
1312eqeq2d 2749 . . . . . 6 (𝑛 = 𝑁 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
149, 13anbi12d 630 . . . . 5 (𝑛 = 𝑁 → (((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))))
1514rspcev 3552 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))) → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
164, 5, 6, 15syl12anc 833 . . 3 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
17 coeeq.3 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
18 cnex 10883 . . . . . 6 ℂ ∈ V
19 nn0ex 12169 . . . . . 6 0 ∈ V
2018, 19elmap 8617 . . . . 5 (𝐴 ∈ (ℂ ↑m0) ↔ 𝐴:ℕ0⟶ℂ)
2117, 20sylibr 233 . . . 4 (𝜑𝐴 ∈ (ℂ ↑m0))
22 coeeu 25291 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
231, 22syl 17 . . . 4 (𝜑 → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
24 imaeq1 5953 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑛 + 1))))
2524eqeq1d 2740 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑛 + 1))) = {0}))
26 fveq1 6755 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2726oveq1d 7270 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2827sumeq2sdv 15344 . . . . . . . . 9 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))
2928mpteq2dv 5172 . . . . . . . 8 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))
3029eqeq2d 2749 . . . . . . 7 (𝑎 = 𝐴 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
3125, 30anbi12d 630 . . . . . 6 (𝑎 = 𝐴 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3231rexbidv 3225 . . . . 5 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3332riota2 7238 . . . 4 ((𝐴 ∈ (ℂ ↑m0) ∧ ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3421, 23, 33syl2anc 583 . . 3 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3516, 34mpbid 231 . 2 (𝜑 → (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴)
363, 35eqtrd 2778 1 (𝜑 → (coeff‘𝐹) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  ∃!wreu 3065  {csn 4558  cmpt 5153  cima 5583  wf 6414  cfv 6418  crio 7211  (class class class)co 7255  m cmap 8573  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  Polycply 25250  coeffccoe 25252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256
This theorem is referenced by:  dgrlem  25295  coeidlem  25303  coeeq2  25308  dgreq  25310  coeaddlem  25315  coemullem  25316  coe1termlem  25324  coecj  25344  basellem2  26136  aacllem  46391
  Copyright terms: Public domain W3C validator