MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq Structured version   Visualization version   GIF version

Theorem coeeq 26286
Description: If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
coeeq.1 (𝜑𝐹 ∈ (Poly‘𝑆))
coeeq.2 (𝜑𝑁 ∈ ℕ0)
coeeq.3 (𝜑𝐴:ℕ0⟶ℂ)
coeeq.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
coeeq.5 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeeq (𝜑 → (coeff‘𝐹) = 𝐴)
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeeq.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 coeval 26282 . . 3 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
31, 2syl 17 . 2 (𝜑 → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
4 coeeq.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
5 coeeq.4 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
6 coeeq.5 . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
7 fvoveq1 7471 . . . . . . . 8 (𝑛 = 𝑁 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑁 + 1)))
87imaeq2d 6089 . . . . . . 7 (𝑛 = 𝑁 → (𝐴 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑁 + 1))))
98eqeq1d 2742 . . . . . 6 (𝑛 = 𝑁 → ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}))
10 oveq2 7456 . . . . . . . . 9 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1110sumeq1d 15748 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
1211mpteq2dv 5268 . . . . . . 7 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
1312eqeq2d 2751 . . . . . 6 (𝑛 = 𝑁 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
149, 13anbi12d 631 . . . . 5 (𝑛 = 𝑁 → (((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))))
1514rspcev 3635 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))) → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
164, 5, 6, 15syl12anc 836 . . 3 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
17 coeeq.3 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
18 cnex 11265 . . . . . 6 ℂ ∈ V
19 nn0ex 12559 . . . . . 6 0 ∈ V
2018, 19elmap 8929 . . . . 5 (𝐴 ∈ (ℂ ↑m0) ↔ 𝐴:ℕ0⟶ℂ)
2117, 20sylibr 234 . . . 4 (𝜑𝐴 ∈ (ℂ ↑m0))
22 coeeu 26284 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
231, 22syl 17 . . . 4 (𝜑 → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
24 imaeq1 6084 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑛 + 1))))
2524eqeq1d 2742 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑛 + 1))) = {0}))
26 fveq1 6919 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2726oveq1d 7463 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2827sumeq2sdv 15751 . . . . . . . . 9 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))
2928mpteq2dv 5268 . . . . . . . 8 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))
3029eqeq2d 2751 . . . . . . 7 (𝑎 = 𝐴 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
3125, 30anbi12d 631 . . . . . 6 (𝑎 = 𝐴 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3231rexbidv 3185 . . . . 5 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3332riota2 7430 . . . 4 ((𝐴 ∈ (ℂ ↑m0) ∧ ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3421, 23, 33syl2anc 583 . . 3 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3516, 34mpbid 232 . 2 (𝜑 → (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴)
363, 35eqtrd 2780 1 (𝜑 → (coeff‘𝐹) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386  {csn 4648  cmpt 5249  cima 5703  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  m cmap 8884  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  0cn0 12553  cuz 12903  ...cfz 13567  cexp 14112  Σcsu 15734  Polycply 26243  coeffccoe 26245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249
This theorem is referenced by:  dgrlem  26288  coeidlem  26296  coeeq2  26301  dgreq  26303  coeaddlem  26308  coemullem  26309  coe1termlem  26317  coecj  26338  basellem2  27143  aacllem  48895
  Copyright terms: Public domain W3C validator