Step | Hyp | Ref
| Expression |
1 | | coeeq.1 |
. . 3
β’ (π β πΉ β (Polyβπ)) |
2 | | coeval 25728 |
. . 3
β’ (πΉ β (Polyβπ) β (coeffβπΉ) = (β©π β (β
βm β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ)))))) |
3 | 1, 2 | syl 17 |
. 2
β’ (π β (coeffβπΉ) = (β©π β (β
βm β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ)))))) |
4 | | coeeq.2 |
. . . 4
β’ (π β π β
β0) |
5 | | coeeq.4 |
. . . 4
β’ (π β (π΄ β
(β€β₯β(π + 1))) = {0}) |
6 | | coeeq.5 |
. . . 4
β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
7 | | fvoveq1 7428 |
. . . . . . . 8
β’ (π = π β (β€β₯β(π + 1)) =
(β€β₯β(π + 1))) |
8 | 7 | imaeq2d 6057 |
. . . . . . 7
β’ (π = π β (π΄ β
(β€β₯β(π + 1))) = (π΄ β
(β€β₯β(π + 1)))) |
9 | 8 | eqeq1d 2734 |
. . . . . 6
β’ (π = π β ((π΄ β
(β€β₯β(π + 1))) = {0} β (π΄ β
(β€β₯β(π + 1))) = {0})) |
10 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = π β (0...π) = (0...π)) |
11 | 10 | sumeq1d 15643 |
. . . . . . . 8
β’ (π = π β Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)) = Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) |
12 | 11 | mpteq2dv 5249 |
. . . . . . 7
β’ (π = π β (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
13 | 12 | eqeq2d 2743 |
. . . . . 6
β’ (π = π β (πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
14 | 9, 13 | anbi12d 631 |
. . . . 5
β’ (π = π β (((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) β ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))))) |
15 | 14 | rspcev 3612 |
. . . 4
β’ ((π β β0
β§ ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) β βπ β β0 ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
16 | 4, 5, 6, 15 | syl12anc 835 |
. . 3
β’ (π β βπ β β0 ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
17 | | coeeq.3 |
. . . . 5
β’ (π β π΄:β0βΆβ) |
18 | | cnex 11187 |
. . . . . 6
β’ β
β V |
19 | | nn0ex 12474 |
. . . . . 6
β’
β0 β V |
20 | 18, 19 | elmap 8861 |
. . . . 5
β’ (π΄ β (β
βm β0) β π΄:β0βΆβ) |
21 | 17, 20 | sylibr 233 |
. . . 4
β’ (π β π΄ β (β βm
β0)) |
22 | | coeeu 25730 |
. . . . 5
β’ (πΉ β (Polyβπ) β β!π β (β
βm β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))))) |
23 | 1, 22 | syl 17 |
. . . 4
β’ (π β β!π β (β βm
β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))))) |
24 | | imaeq1 6052 |
. . . . . . . 8
β’ (π = π΄ β (π β (β€β₯β(π + 1))) = (π΄ β
(β€β₯β(π + 1)))) |
25 | 24 | eqeq1d 2734 |
. . . . . . 7
β’ (π = π΄ β ((π β (β€β₯β(π + 1))) = {0} β (π΄ β
(β€β₯β(π + 1))) = {0})) |
26 | | fveq1 6887 |
. . . . . . . . . . 11
β’ (π = π΄ β (πβπ) = (π΄βπ)) |
27 | 26 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π = π΄ β ((πβπ) Β· (π§βπ)) = ((π΄βπ) Β· (π§βπ))) |
28 | 27 | sumeq2sdv 15646 |
. . . . . . . . 9
β’ (π = π΄ β Ξ£π β (0...π)((πβπ) Β· (π§βπ)) = Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) |
29 | 28 | mpteq2dv 5249 |
. . . . . . . 8
β’ (π = π΄ β (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))) = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
30 | 29 | eqeq2d 2743 |
. . . . . . 7
β’ (π = π΄ β (πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
31 | 25, 30 | anbi12d 631 |
. . . . . 6
β’ (π = π΄ β (((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ)))) β ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))))) |
32 | 31 | rexbidv 3178 |
. . . . 5
β’ (π = π΄ β (βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ)))) β βπ β β0 ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))))) |
33 | 32 | riota2 7387 |
. . . 4
β’ ((π΄ β (β
βm β0) β§ β!π β (β βm
β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))))) β (βπ β β0 ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) β (β©π β (β βm
β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))))) = π΄)) |
34 | 21, 23, 33 | syl2anc 584 |
. . 3
β’ (π β (βπ β β0 ((π΄ β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) β (β©π β (β βm
β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))))) = π΄)) |
35 | 16, 34 | mpbid 231 |
. 2
β’ (π β (β©π β (β
βm β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))))) = π΄) |
36 | 3, 35 | eqtrd 2772 |
1
β’ (π β (coeffβπΉ) = π΄) |