MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq Structured version   Visualization version   GIF version

Theorem coeeq 24809
Description: If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
coeeq.1 (𝜑𝐹 ∈ (Poly‘𝑆))
coeeq.2 (𝜑𝑁 ∈ ℕ0)
coeeq.3 (𝜑𝐴:ℕ0⟶ℂ)
coeeq.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
coeeq.5 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeeq (𝜑 → (coeff‘𝐹) = 𝐴)
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeeq.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 coeval 24805 . . 3 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
31, 2syl 17 . 2 (𝜑 → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
4 coeeq.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
5 coeeq.4 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
6 coeeq.5 . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
7 fvoveq1 7171 . . . . . . . 8 (𝑛 = 𝑁 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑁 + 1)))
87imaeq2d 5922 . . . . . . 7 (𝑛 = 𝑁 → (𝐴 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑁 + 1))))
98eqeq1d 2821 . . . . . 6 (𝑛 = 𝑁 → ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}))
10 oveq2 7156 . . . . . . . . 9 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1110sumeq1d 15050 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
1211mpteq2dv 5153 . . . . . . 7 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
1312eqeq2d 2830 . . . . . 6 (𝑛 = 𝑁 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
149, 13anbi12d 632 . . . . 5 (𝑛 = 𝑁 → (((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))))
1514rspcev 3621 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))) → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
164, 5, 6, 15syl12anc 834 . . 3 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
17 coeeq.3 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
18 cnex 10610 . . . . . 6 ℂ ∈ V
19 nn0ex 11895 . . . . . 6 0 ∈ V
2018, 19elmap 8427 . . . . 5 (𝐴 ∈ (ℂ ↑m0) ↔ 𝐴:ℕ0⟶ℂ)
2117, 20sylibr 236 . . . 4 (𝜑𝐴 ∈ (ℂ ↑m0))
22 coeeu 24807 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
231, 22syl 17 . . . 4 (𝜑 → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
24 imaeq1 5917 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝐴 “ (ℤ‘(𝑛 + 1))))
2524eqeq1d 2821 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝐴 “ (ℤ‘(𝑛 + 1))) = {0}))
26 fveq1 6662 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2726oveq1d 7163 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2827sumeq2sdv 15053 . . . . . . . . 9 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))
2928mpteq2dv 5153 . . . . . . . 8 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))
3029eqeq2d 2830 . . . . . . 7 (𝑎 = 𝐴 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))))
3125, 30anbi12d 632 . . . . . 6 (𝑎 = 𝐴 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3231rexbidv 3295 . . . . 5 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘))))))
3332riota2 7131 . . . 4 ((𝐴 ∈ (ℂ ↑m0) ∧ ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3421, 23, 33syl2anc 586 . . 3 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝐴 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝑧𝑘)))) ↔ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴))
3516, 34mpbid 234 . 2 (𝜑 → (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) = 𝐴)
363, 35eqtrd 2854 1 (𝜑 → (coeff‘𝐹) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wrex 3137  ∃!wreu 3138  {csn 4559  cmpt 5137  cima 5551  wf 6344  cfv 6348  crio 7105  (class class class)co 7148  m cmap 8398  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  0cn0 11889  cuz 12235  ...cfz 12884  cexp 13421  Σcsu 15034  Polycply 24766  coeffccoe 24768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24263  df-ply 24770  df-coe 24772
This theorem is referenced by:  dgrlem  24811  coeidlem  24819  coeeq2  24824  dgreq  24826  coeaddlem  24831  coemullem  24832  coe1termlem  24840  coecj  24860  basellem2  25651  aacllem  44893
  Copyright terms: Public domain W3C validator