| Step | Hyp | Ref
| Expression |
| 1 | | coeeq.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | coeval 26185 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 4 | | coeeq.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 5 | | coeeq.4 |
. . . 4
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 6 | | coeeq.5 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 7 | | fvoveq1 7433 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘(𝑁 + 1))) |
| 8 | 7 | imaeq2d 6052 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝐴 “
(ℤ≥‘(𝑛 + 1))) = (𝐴 “
(ℤ≥‘(𝑁 + 1)))) |
| 9 | 8 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ↔ (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0})) |
| 10 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
| 11 | 10 | sumeq1d 15721 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 12 | 11 | mpteq2dv 5220 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 13 | 12 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
| 14 | 9, 13 | anbi12d 632 |
. . . . 5
⊢ (𝑛 = 𝑁 → (((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))))) |
| 15 | 14 | rspcev 3606 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ((𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) → ∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
| 16 | 4, 5, 6, 15 | syl12anc 836 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
| 17 | | coeeq.3 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 18 | | cnex 11215 |
. . . . . 6
⊢ ℂ
∈ V |
| 19 | | nn0ex 12512 |
. . . . . 6
⊢
ℕ0 ∈ V |
| 20 | 18, 19 | elmap 8890 |
. . . . 5
⊢ (𝐴 ∈ (ℂ
↑m ℕ0) ↔ 𝐴:ℕ0⟶ℂ) |
| 21 | 17, 20 | sylibr 234 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m
ℕ0)) |
| 22 | | coeeu 26187 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 23 | 1, 22 | syl 17 |
. . . 4
⊢ (𝜑 → ∃!𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 24 | | imaeq1 6047 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = (𝐴 “
(ℤ≥‘(𝑛 + 1)))) |
| 25 | 24 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ (𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0})) |
| 26 | | fveq1 6880 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) |
| 27 | 26 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 28 | 27 | sumeq2sdv 15724 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 29 | 28 | mpteq2dv 5220 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 30 | 29 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
| 31 | 25, 30 | anbi12d 632 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))))) |
| 32 | 31 | rexbidv 3165 |
. . . . 5
⊢ (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))))) |
| 33 | 32 | riota2 7392 |
. . . 4
⊢ ((𝐴 ∈ (ℂ
↑m ℕ0) ∧ ∃!𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → (∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) ↔ (℩𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = 𝐴)) |
| 34 | 21, 23, 33 | syl2anc 584 |
. . 3
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ((𝐴 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝑧↑𝑘)))) ↔ (℩𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = 𝐴)) |
| 35 | 16, 34 | mpbid 232 |
. 2
⊢ (𝜑 → (℩𝑎 ∈ (ℂ
↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = 𝐴) |
| 36 | 3, 35 | eqtrd 2771 |
1
⊢ (𝜑 → (coeff‘𝐹) = 𝐴) |