MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Visualization version   GIF version

Theorem r1om 9660
Description: The set of hereditarily finite sets is countable. See ackbij2 9659 for an explicit bijection that works without Infinity. See also r1omALT 10192. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om (𝑅1‘ω) ≈ ω

Proof of Theorem r1om
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9099 . . . 4 ω ∈ V
2 limom 7586 . . . 4 Lim ω
3 r1lim 9194 . . . 4 ((ω ∈ V ∧ Lim ω) → (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎))
41, 2, 3mp2an 691 . . 3 (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎)
5 r1fnon 9189 . . . 4 𝑅1 Fn On
6 fnfun 6442 . . . 4 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 6997 . . . 4 (Fun 𝑅1 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω))
85, 6, 7mp2b 10 . . 3 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω)
94, 8eqtri 2847 . 2 (𝑅1‘ω) = (𝑅1 “ ω)
10 iuneq1 4922 . . . . . . 7 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑓𝑎 ({𝑓} × 𝒫 𝑓))
11 sneq 4560 . . . . . . . . 9 (𝑓 = 𝑏 → {𝑓} = {𝑏})
12 pweq 4538 . . . . . . . . 9 (𝑓 = 𝑏 → 𝒫 𝑓 = 𝒫 𝑏)
1311, 12xpeq12d 5574 . . . . . . . 8 (𝑓 = 𝑏 → ({𝑓} × 𝒫 𝑓) = ({𝑏} × 𝒫 𝑏))
1413cbviunv 4952 . . . . . . 7 𝑓𝑎 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏)
1510, 14syl6eq 2875 . . . . . 6 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏))
1615fveq2d 6663 . . . . 5 (𝑒 = 𝑎 → (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
1716cbvmptv 5156 . . . 4 (𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓))) = (𝑎 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
18 dmeq 5760 . . . . . . . 8 (𝑐 = 𝑎 → dom 𝑐 = dom 𝑎)
1918pweqd 4541 . . . . . . 7 (𝑐 = 𝑎 → 𝒫 dom 𝑐 = 𝒫 dom 𝑎)
20 imaeq1 5912 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐𝑑) = (𝑎𝑑))
2120fveq2d 6663 . . . . . . 7 (𝑐 = 𝑎 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)))
2219, 21mpteq12dv 5138 . . . . . 6 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))))
23 imaeq2 5913 . . . . . . . 8 (𝑑 = 𝑏 → (𝑎𝑑) = (𝑎𝑏))
2423fveq2d 6663 . . . . . . 7 (𝑑 = 𝑏 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2524cbvmptv 5156 . . . . . 6 (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2622, 25syl6eq 2875 . . . . 5 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
2726cbvmptv 5156 . . . 4 (𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))) = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
28 eqid 2824 . . . 4 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω) = (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω)
2917, 27, 28ackbij2 9659 . . 3 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω
30 fvex 6672 . . . . 5 (𝑅1‘ω) ∈ V
319, 30eqeltrri 2913 . . . 4 (𝑅1 “ ω) ∈ V
3231f1oen 8522 . . 3 ( (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω → (𝑅1 “ ω) ≈ ω)
3329, 32ax-mp 5 . 2 (𝑅1 “ ω) ≈ ω
349, 33eqbrtri 5074 1 (𝑅1‘ω) ≈ ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  Vcvv 3480  cin 3918  c0 4276  𝒫 cpw 4522  {csn 4550   cuni 4825   ciun 4906   class class class wbr 5053  cmpt 5133   × cxp 5541  dom cdm 5543  cima 5546  Oncon0 6179  Lim wlim 6180  Fun wfun 6338   Fn wfn 6339  1-1-ontowf1o 6343  cfv 6344  ωcom 7571  reccrdg 8037  cen 8498  Fincfn 8501  𝑅1cr1 9184  cardccrd 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-r1 9186  df-rank 9187  df-dju 9323  df-card 9361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator