MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Visualization version   GIF version

Theorem r1om 9655
Description: The set of hereditarily finite sets is countable. See ackbij2 9654 for an explicit bijection that works without Infinity. See also r1omALT 10187. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om (𝑅1‘ω) ≈ ω

Proof of Theorem r1om
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9090 . . . 4 ω ∈ V
2 limom 7575 . . . 4 Lim ω
3 r1lim 9185 . . . 4 ((ω ∈ V ∧ Lim ω) → (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎))
41, 2, 3mp2an 691 . . 3 (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎)
5 r1fnon 9180 . . . 4 𝑅1 Fn On
6 fnfun 6423 . . . 4 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 6985 . . . 4 (Fun 𝑅1 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω))
85, 6, 7mp2b 10 . . 3 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω)
94, 8eqtri 2821 . 2 (𝑅1‘ω) = (𝑅1 “ ω)
10 iuneq1 4897 . . . . . . 7 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑓𝑎 ({𝑓} × 𝒫 𝑓))
11 sneq 4535 . . . . . . . . 9 (𝑓 = 𝑏 → {𝑓} = {𝑏})
12 pweq 4513 . . . . . . . . 9 (𝑓 = 𝑏 → 𝒫 𝑓 = 𝒫 𝑏)
1311, 12xpeq12d 5550 . . . . . . . 8 (𝑓 = 𝑏 → ({𝑓} × 𝒫 𝑓) = ({𝑏} × 𝒫 𝑏))
1413cbviunv 4927 . . . . . . 7 𝑓𝑎 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏)
1510, 14eqtrdi 2849 . . . . . 6 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏))
1615fveq2d 6649 . . . . 5 (𝑒 = 𝑎 → (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
1716cbvmptv 5133 . . . 4 (𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓))) = (𝑎 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
18 dmeq 5736 . . . . . . . 8 (𝑐 = 𝑎 → dom 𝑐 = dom 𝑎)
1918pweqd 4516 . . . . . . 7 (𝑐 = 𝑎 → 𝒫 dom 𝑐 = 𝒫 dom 𝑎)
20 imaeq1 5891 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐𝑑) = (𝑎𝑑))
2120fveq2d 6649 . . . . . . 7 (𝑐 = 𝑎 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)))
2219, 21mpteq12dv 5115 . . . . . 6 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))))
23 imaeq2 5892 . . . . . . . 8 (𝑑 = 𝑏 → (𝑎𝑑) = (𝑎𝑏))
2423fveq2d 6649 . . . . . . 7 (𝑑 = 𝑏 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2524cbvmptv 5133 . . . . . 6 (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2622, 25eqtrdi 2849 . . . . 5 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
2726cbvmptv 5133 . . . 4 (𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))) = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
28 eqid 2798 . . . 4 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω) = (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω)
2917, 27, 28ackbij2 9654 . . 3 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω
30 fvex 6658 . . . . 5 (𝑅1‘ω) ∈ V
319, 30eqeltrri 2887 . . . 4 (𝑅1 “ ω) ∈ V
3231f1oen 8513 . . 3 ( (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω → (𝑅1 “ ω) ≈ ω)
3329, 32ax-mp 5 . 2 (𝑅1 “ ω) ≈ ω
349, 33eqbrtri 5051 1 (𝑅1‘ω) ≈ ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800   ciun 4881   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  cima 5522  Oncon0 6159  Lim wlim 6160  Fun wfun 6318   Fn wfn 6319  1-1-ontowf1o 6323  cfv 6324  ωcom 7560  reccrdg 8028  cen 8489  Fincfn 8492  𝑅1cr1 9175  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator