MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Visualization version   GIF version

Theorem r1om 10000
Description: The set of hereditarily finite sets is countable. See ackbij2 9999 for an explicit bijection that works without Infinity. See also r1omALT 10532. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om (𝑅1‘ω) ≈ ω

Proof of Theorem r1om
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9401 . . . 4 ω ∈ V
2 limom 7728 . . . 4 Lim ω
3 r1lim 9530 . . . 4 ((ω ∈ V ∧ Lim ω) → (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎))
41, 2, 3mp2an 689 . . 3 (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎)
5 r1fnon 9525 . . . 4 𝑅1 Fn On
6 fnfun 6533 . . . 4 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 7121 . . . 4 (Fun 𝑅1 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω))
85, 6, 7mp2b 10 . . 3 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω)
94, 8eqtri 2766 . 2 (𝑅1‘ω) = (𝑅1 “ ω)
10 iuneq1 4940 . . . . . . 7 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑓𝑎 ({𝑓} × 𝒫 𝑓))
11 sneq 4571 . . . . . . . . 9 (𝑓 = 𝑏 → {𝑓} = {𝑏})
12 pweq 4549 . . . . . . . . 9 (𝑓 = 𝑏 → 𝒫 𝑓 = 𝒫 𝑏)
1311, 12xpeq12d 5620 . . . . . . . 8 (𝑓 = 𝑏 → ({𝑓} × 𝒫 𝑓) = ({𝑏} × 𝒫 𝑏))
1413cbviunv 4970 . . . . . . 7 𝑓𝑎 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏)
1510, 14eqtrdi 2794 . . . . . 6 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏))
1615fveq2d 6778 . . . . 5 (𝑒 = 𝑎 → (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
1716cbvmptv 5187 . . . 4 (𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓))) = (𝑎 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
18 dmeq 5812 . . . . . . . 8 (𝑐 = 𝑎 → dom 𝑐 = dom 𝑎)
1918pweqd 4552 . . . . . . 7 (𝑐 = 𝑎 → 𝒫 dom 𝑐 = 𝒫 dom 𝑎)
20 imaeq1 5964 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐𝑑) = (𝑎𝑑))
2120fveq2d 6778 . . . . . . 7 (𝑐 = 𝑎 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)))
2219, 21mpteq12dv 5165 . . . . . 6 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))))
23 imaeq2 5965 . . . . . . . 8 (𝑑 = 𝑏 → (𝑎𝑑) = (𝑎𝑏))
2423fveq2d 6778 . . . . . . 7 (𝑑 = 𝑏 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2524cbvmptv 5187 . . . . . 6 (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2622, 25eqtrdi 2794 . . . . 5 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
2726cbvmptv 5187 . . . 4 (𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))) = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
28 eqid 2738 . . . 4 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω) = (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω)
2917, 27, 28ackbij2 9999 . . 3 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω
30 fvex 6787 . . . . 5 (𝑅1‘ω) ∈ V
319, 30eqeltrri 2836 . . . 4 (𝑅1 “ ω) ∈ V
3231f1oen 8761 . . 3 ( (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω → (𝑅1 “ ω) ≈ ω)
3329, 32ax-mp 5 . 2 (𝑅1 “ ω) ≈ ω
349, 33eqbrtri 5095 1 (𝑅1‘ω) ≈ ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  cima 5592  Oncon0 6266  Lim wlim 6267  Fun wfun 6427   Fn wfn 6428  1-1-ontowf1o 6432  cfv 6433  ωcom 7712  reccrdg 8240  cen 8730  Fincfn 8733  𝑅1cr1 9520  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-r1 9522  df-rank 9523  df-dju 9659  df-card 9697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator