| Step | Hyp | Ref
| Expression |
| 1 | | omex 9657 |
. . . 4
⊢ ω
∈ V |
| 2 | | limom 7877 |
. . . 4
⊢ Lim
ω |
| 3 | | r1lim 9786 |
. . . 4
⊢ ((ω
∈ V ∧ Lim ω) → (𝑅1‘ω) =
∪ 𝑎 ∈ ω
(𝑅1‘𝑎)) |
| 4 | 1, 2, 3 | mp2an 692 |
. . 3
⊢
(𝑅1‘ω) = ∪ 𝑎 ∈ ω
(𝑅1‘𝑎) |
| 5 | | r1fnon 9781 |
. . . 4
⊢
𝑅1 Fn On |
| 6 | | fnfun 6638 |
. . . 4
⊢
(𝑅1 Fn On → Fun
𝑅1) |
| 7 | | funiunfv 7240 |
. . . 4
⊢ (Fun
𝑅1 → ∪ 𝑎 ∈ ω
(𝑅1‘𝑎) = ∪
(𝑅1 “ ω)) |
| 8 | 5, 6, 7 | mp2b 10 |
. . 3
⊢ ∪ 𝑎 ∈ ω
(𝑅1‘𝑎) = ∪
(𝑅1 “ ω) |
| 9 | 4, 8 | eqtri 2758 |
. 2
⊢
(𝑅1‘ω) = ∪
(𝑅1 “ ω) |
| 10 | | iuneq1 4984 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → ∪
𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓) = ∪ 𝑓 ∈ 𝑎 ({𝑓} × 𝒫 𝑓)) |
| 11 | | sneq 4611 |
. . . . . . . . 9
⊢ (𝑓 = 𝑏 → {𝑓} = {𝑏}) |
| 12 | | pweq 4589 |
. . . . . . . . 9
⊢ (𝑓 = 𝑏 → 𝒫 𝑓 = 𝒫 𝑏) |
| 13 | 11, 12 | xpeq12d 5685 |
. . . . . . . 8
⊢ (𝑓 = 𝑏 → ({𝑓} × 𝒫 𝑓) = ({𝑏} × 𝒫 𝑏)) |
| 14 | 13 | cbviunv 5016 |
. . . . . . 7
⊢ ∪ 𝑓 ∈ 𝑎 ({𝑓} × 𝒫 𝑓) = ∪ 𝑏 ∈ 𝑎 ({𝑏} × 𝒫 𝑏) |
| 15 | 10, 14 | eqtrdi 2786 |
. . . . . 6
⊢ (𝑒 = 𝑎 → ∪
𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓) = ∪ 𝑏 ∈ 𝑎 ({𝑏} × 𝒫 𝑏)) |
| 16 | 15 | fveq2d 6880 |
. . . . 5
⊢ (𝑒 = 𝑎 → (card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)) = (card‘∪ 𝑏 ∈ 𝑎 ({𝑏} × 𝒫 𝑏))) |
| 17 | 16 | cbvmptv 5225 |
. . . 4
⊢ (𝑒 ∈ (𝒫 ω ∩
Fin) ↦ (card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓))) = (𝑎 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑏 ∈ 𝑎 ({𝑏} × 𝒫 𝑏))) |
| 18 | | dmeq 5883 |
. . . . . . . 8
⊢ (𝑐 = 𝑎 → dom 𝑐 = dom 𝑎) |
| 19 | 18 | pweqd 4592 |
. . . . . . 7
⊢ (𝑐 = 𝑎 → 𝒫 dom 𝑐 = 𝒫 dom 𝑎) |
| 20 | | imaeq1 6042 |
. . . . . . . 8
⊢ (𝑐 = 𝑎 → (𝑐 “ 𝑑) = (𝑎 “ 𝑑)) |
| 21 | 20 | fveq2d 6880 |
. . . . . . 7
⊢ (𝑐 = 𝑎 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑑))) |
| 22 | 19, 21 | mpteq12dv 5207 |
. . . . . 6
⊢ (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑))) = (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑑)))) |
| 23 | | imaeq2 6043 |
. . . . . . . 8
⊢ (𝑑 = 𝑏 → (𝑎 “ 𝑑) = (𝑎 “ 𝑏)) |
| 24 | 23 | fveq2d 6880 |
. . . . . . 7
⊢ (𝑑 = 𝑏 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑏))) |
| 25 | 24 | cbvmptv 5225 |
. . . . . 6
⊢ (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑏))) |
| 26 | 22, 25 | eqtrdi 2786 |
. . . . 5
⊢ (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑏)))) |
| 27 | 26 | cbvmptv 5225 |
. . . 4
⊢ (𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑)))) = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎 “ 𝑏)))) |
| 28 | | eqid 2735 |
. . . 4
⊢ ∪ (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑)))), ∅) “ ω) = ∪ (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑)))), ∅) “
ω) |
| 29 | 17, 27, 28 | ackbij2 10256 |
. . 3
⊢ ∪ (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑)))), ∅) “ ω):∪ (𝑅1 “ ω)–1-1-onto→ω |
| 30 | | fvex 6889 |
. . . . 5
⊢
(𝑅1‘ω) ∈ V |
| 31 | 9, 30 | eqeltrri 2831 |
. . . 4
⊢ ∪ (𝑅1 “ ω) ∈
V |
| 32 | 31 | f1oen 8987 |
. . 3
⊢ (∪ (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑓 ∈ 𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐 “ 𝑑)))), ∅) “ ω):∪ (𝑅1 “ ω)–1-1-onto→ω → ∪
(𝑅1 “ ω) ≈ ω) |
| 33 | 29, 32 | ax-mp 5 |
. 2
⊢ ∪ (𝑅1 “ ω) ≈
ω |
| 34 | 9, 33 | eqbrtri 5140 |
1
⊢
(𝑅1‘ω) ≈ ω |