MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnnei Structured version   Visualization version   GIF version

Theorem utopsnnei 23401
Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnnei ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem utopsnnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})
2 imaeq1 5964 . . . . 5 (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃}))
32rspceeqv 3575 . . . 4 ((𝑉𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
41, 3mpan2 688 . . 3 (𝑉𝑈 → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
543ad2ant2 1133 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
6 utoptop.1 . . . . . 6 𝐽 = (unifTop‘𝑈)
76utopsnneip 23400 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
873adant2 1130 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
98eleq2d 2824 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
10 imaexg 7762 . . . . 5 (𝑉𝑈 → (𝑉 “ {𝑃}) ∈ V)
11 eqid 2738 . . . . . 6 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
1211elrnmpt 5865 . . . . 5 ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
1310, 12syl 17 . . . 4 (𝑉𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
14133ad2ant2 1133 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
159, 14bitrd 278 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
165, 15mpbird 256 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  {csn 4561  cmpt 5157  ran crn 5590  cima 5592  cfv 6433  neicnei 22248  UnifOncust 23351  unifTopcutop 23382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-fi 9170  df-top 22043  df-nei 22249  df-ust 23352  df-utop 23383
This theorem is referenced by:  utop2nei  23402  utop3cls  23403  utopreg  23404
  Copyright terms: Public domain W3C validator