![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > utopsnnei | Structured version Visualization version GIF version |
Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
Ref | Expression |
---|---|
utopsnnei | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃}) | |
2 | imaeq1 6084 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃})) | |
3 | 2 | rspceeqv 3658 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
4 | 1, 3 | mpan2 690 | . . 3 ⊢ (𝑉 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
5 | 4 | 3ad2ant2 1134 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
6 | utoptop.1 | . . . . . 6 ⊢ 𝐽 = (unifTop‘𝑈) | |
7 | 6 | utopsnneip 24278 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
8 | 7 | 3adant2 1131 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
9 | 8 | eleq2d 2830 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})))) |
10 | imaexg 7953 | . . . . 5 ⊢ (𝑉 ∈ 𝑈 → (𝑉 “ {𝑃}) ∈ V) | |
11 | eqid 2740 | . . . . . 6 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) | |
12 | 11 | elrnmpt 5981 | . . . . 5 ⊢ ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ 𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
14 | 13 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
15 | 9, 14 | bitrd 279 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 {csn 4648 ↦ cmpt 5249 ran crn 5701 “ cima 5703 ‘cfv 6573 neicnei 23126 UnifOncust 24229 unifTopcutop 24260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-en 9004 df-fin 9007 df-fi 9480 df-top 22921 df-nei 23127 df-ust 24230 df-utop 24261 |
This theorem is referenced by: utop2nei 24280 utop3cls 24281 utopreg 24282 |
Copyright terms: Public domain | W3C validator |