| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > utopsnnei | Structured version Visualization version GIF version | ||
| Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
| Ref | Expression |
|---|---|
| utopsnnei | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃}) | |
| 2 | imaeq1 6010 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃})) | |
| 3 | 2 | rspceeqv 3602 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝑉 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
| 5 | 4 | 3ad2ant2 1134 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
| 6 | utoptop.1 | . . . . . 6 ⊢ 𝐽 = (unifTop‘𝑈) | |
| 7 | 6 | utopsnneip 24152 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| 8 | 7 | 3adant2 1131 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| 9 | 8 | eleq2d 2814 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})))) |
| 10 | imaexg 7853 | . . . . 5 ⊢ (𝑉 ∈ 𝑈 → (𝑉 “ {𝑃}) ∈ V) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) | |
| 12 | 11 | elrnmpt 5904 | . . . . 5 ⊢ ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
| 13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ 𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
| 14 | 13 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
| 15 | 9, 14 | bitrd 279 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
| 16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 {csn 4579 ↦ cmpt 5176 ran crn 5624 “ cima 5626 ‘cfv 6486 neicnei 23000 UnifOncust 24103 unifTopcutop 24134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-2o 8396 df-en 8880 df-fin 8883 df-fi 9320 df-top 22797 df-nei 23001 df-ust 24104 df-utop 24135 |
| This theorem is referenced by: utop2nei 24154 utop3cls 24155 utopreg 24156 |
| Copyright terms: Public domain | W3C validator |