Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > utopsnnei | Structured version Visualization version GIF version |
Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
Ref | Expression |
---|---|
utopsnnei | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃}) | |
2 | imaeq1 5938 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃})) | |
3 | 2 | rspceeqv 3564 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝑉 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
5 | 4 | 3ad2ant2 1136 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
6 | utoptop.1 | . . . . . 6 ⊢ 𝐽 = (unifTop‘𝑈) | |
7 | 6 | utopsnneip 23170 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
8 | 7 | 3adant2 1133 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
9 | 8 | eleq2d 2824 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})))) |
10 | imaexg 7711 | . . . . 5 ⊢ (𝑉 ∈ 𝑈 → (𝑉 “ {𝑃}) ∈ V) | |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) | |
12 | 11 | elrnmpt 5839 | . . . . 5 ⊢ ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ 𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
14 | 13 | 3ad2ant2 1136 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
15 | 9, 14 | bitrd 282 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
16 | 5, 15 | mpbird 260 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∃wrex 3063 Vcvv 3420 {csn 4555 ↦ cmpt 5149 ran crn 5566 “ cima 5568 ‘cfv 6397 neicnei 22018 UnifOncust 23121 unifTopcutop 23152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-om 7663 df-1o 8222 df-er 8411 df-en 8647 df-fin 8650 df-fi 9051 df-top 21815 df-nei 22019 df-ust 23122 df-utop 23153 |
This theorem is referenced by: utop2nei 23172 utop3cls 23173 utopreg 23174 |
Copyright terms: Public domain | W3C validator |