MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnnei Structured version   Visualization version   GIF version

Theorem utopsnnei 23171
Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnnei ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem utopsnnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})
2 imaeq1 5938 . . . . 5 (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃}))
32rspceeqv 3564 . . . 4 ((𝑉𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
41, 3mpan2 691 . . 3 (𝑉𝑈 → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
543ad2ant2 1136 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
6 utoptop.1 . . . . . 6 𝐽 = (unifTop‘𝑈)
76utopsnneip 23170 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
873adant2 1133 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
98eleq2d 2824 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
10 imaexg 7711 . . . . 5 (𝑉𝑈 → (𝑉 “ {𝑃}) ∈ V)
11 eqid 2738 . . . . . 6 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
1211elrnmpt 5839 . . . . 5 ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
1310, 12syl 17 . . . 4 (𝑉𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
14133ad2ant2 1136 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
159, 14bitrd 282 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
165, 15mpbird 260 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2111  wrex 3063  Vcvv 3420  {csn 4555  cmpt 5149  ran crn 5566  cima 5568  cfv 6397  neicnei 22018  UnifOncust 23121  unifTopcutop 23152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-om 7663  df-1o 8222  df-er 8411  df-en 8647  df-fin 8650  df-fi 9051  df-top 21815  df-nei 22019  df-ust 23122  df-utop 23153
This theorem is referenced by:  utop2nei  23172  utop3cls  23173  utopreg  23174
  Copyright terms: Public domain W3C validator