Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > utopsnnei | Structured version Visualization version GIF version |
Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
Ref | Expression |
---|---|
utopsnnei | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃}) | |
2 | imaeq1 5964 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃})) | |
3 | 2 | rspceeqv 3575 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
4 | 1, 3 | mpan2 688 | . . 3 ⊢ (𝑉 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
5 | 4 | 3ad2ant2 1133 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})) |
6 | utoptop.1 | . . . . . 6 ⊢ 𝐽 = (unifTop‘𝑈) | |
7 | 6 | utopsnneip 23400 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
8 | 7 | 3adant2 1130 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
9 | 8 | eleq2d 2824 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})))) |
10 | imaexg 7762 | . . . . 5 ⊢ (𝑉 ∈ 𝑈 → (𝑉 “ {𝑃}) ∈ V) | |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) | |
12 | 11 | elrnmpt 5865 | . . . . 5 ⊢ ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ 𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
14 | 13 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
15 | 9, 14 | bitrd 278 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣 ∈ 𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))) |
16 | 5, 15 | mpbird 256 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 {csn 4561 ↦ cmpt 5157 ran crn 5590 “ cima 5592 ‘cfv 6433 neicnei 22248 UnifOncust 23351 unifTopcutop 23382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-fin 8737 df-fi 9170 df-top 22043 df-nei 22249 df-ust 23352 df-utop 23383 |
This theorem is referenced by: utop2nei 23402 utop3cls 23403 utopreg 23404 |
Copyright terms: Public domain | W3C validator |