MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnnei Structured version   Visualization version   GIF version

Theorem utopsnnei 24167
Description: Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnnei ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem utopsnnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})
2 imaeq1 6010 . . . . 5 (𝑣 = 𝑉 → (𝑣 “ {𝑃}) = (𝑉 “ {𝑃}))
32rspceeqv 3596 . . . 4 ((𝑉𝑈 ∧ (𝑉 “ {𝑃}) = (𝑉 “ {𝑃})) → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
41, 3mpan2 691 . . 3 (𝑉𝑈 → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
543ad2ant2 1134 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃}))
6 utoptop.1 . . . . . 6 𝐽 = (unifTop‘𝑈)
76utopsnneip 24166 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
873adant2 1131 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
98eleq2d 2819 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
10 imaexg 7851 . . . . 5 (𝑉𝑈 → (𝑉 “ {𝑃}) ∈ V)
11 eqid 2733 . . . . . 6 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
1211elrnmpt 5904 . . . . 5 ((𝑉 “ {𝑃}) ∈ V → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
1310, 12syl 17 . . . 4 (𝑉𝑈 → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
14133ad2ant2 1134 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
159, 14bitrd 279 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ((𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ↔ ∃𝑣𝑈 (𝑉 “ {𝑃}) = (𝑣 “ {𝑃})))
165, 15mpbird 257 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  {csn 4577  cmpt 5176  ran crn 5622  cima 5624  cfv 6488  neicnei 23015  UnifOncust 24118  unifTopcutop 24148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-om 7805  df-1o 8393  df-2o 8394  df-en 8878  df-fin 8881  df-fi 9304  df-top 22812  df-nei 23016  df-ust 24119  df-utop 24149
This theorem is referenced by:  utop2nei  24168  utop3cls  24169  utopreg  24170
  Copyright terms: Public domain W3C validator